Hive基础概念、安装部署与基本使用

时间:2023-11-10 20:36:26

1. Hive简介

1.1 什么是Hive

Hives是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。

1.2 为什么使用Hive

① 直接使用Hadoop面临人员学习成功太高、项目周期要求太短、MapReduce实现复杂查询逻辑开发难度太大等问题;

② Hive操作接口采用类SQL语法,提供快速开发的能力,避免了去写MapReduce,减少开发人员的学习成本,扩展功能很方便。

1.3 Hive的特点

可扩展:Hive可以*的扩展集群的规模,一般情况下不需要重启服务;

延展性:Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数;

容错:良好的容错性,节点出现问题SQL仍可完成执行;

2. Hive架构

2.1 架构图

2.2 基本组件及其基本功能

用户接口:主要有三个,即CLI、JDBC/ODBC、WebGUI。其中,CLI为shell命令行;JDBC/ODBC是Hive的Java实现,与传统数据库JDBC类似;WebGUI是通过浏览器访问Hive。

元数据存储:通常将元数据存储在关系数据库如mysql,derby中。Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。

解释器、编译器、优化器、执行器。它们完成HQL查询语句从词法分析、语法分析、编译、优化以及查询计划的生成、生成的查询计划存储在HDFS中,并在随后由MapReduce调用执行。

3. Hive与Hadoop的关系

Hive利用HDFS存储数据,利用MapReduce查询数据

图省略

4. Hive与传统数据库对比

Hive基础概念、安装部署与基本使用

总结:hive具有sql数据库的外表,但应用场景完全不同,hive只适合用来做批量数据统计分析。

5. Hive与Hbase对比

两者的共同点:

hbase与hive都是架构在hadoop之上的,都是用hadoop作为底层存储。

两者的区别:

1. Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Hadoop对实时操作的缺陷的项目;

2. 操作RMDB数据库,如果是全表扫描,就用Hive+hadoop,如果是索引访问,就用HBase+Hadoop;

3. Hive query就是MapReduce jobs可以从5分钟到数小时不止,HBase是非常高效的,肯定比Hive高效的多。

4. Hive本身不存储和计算数据,它完全依赖于HDFS和MapReduce,Hive中的表纯逻辑;

5. Hive借用hadoop的MapReduce来完成一些hive中的命令的执行;

6. HBase是物理表,不是逻辑表,提供一个超大的内存hash表,搜索引擎通过它来存储索引,方便查询操作;

7. HBase是列存储。所以HBase可以对数据进行增删改等操作,但是Hive是行的,只能追加数据;

8. hdfs作为底层存储,hdfs是存放文件的系统,而HBase负责组织文件;

6. Hive的数据存储

(1) Hive中所有的数据都存储在HDFS中,没有专门的数据存储格式(可支持Text,SequenceFile,ParquetFile,RCFILE等);

(2) 只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据;

(3) Hive中包含以下数据模型:DB、Table、External Table、Partition、Bucket。

a) DB:在HDFS中表现为${hive.metastore.warehouse.dir}目录下一个文件夹;

b) Table:在HDFS中表现所属DB目录下一个文件夹;

c) External Table:外部表,与Table类似,不过其数据存放位置可以在任意指定路径。

普通表:删除表后,HDFS上的文件都删了;

External外部表删除后,HDFS上的文件没有删除,只是把文件删除了。

d) Partition:在HDFS中表现为Table目录下的子目录;

e) Bucket:桶,在HDFS中表现为同一个表目录下根据hash散列之后的多个文件,会根据不同的文件把数据放到不同的文件中。

7. Hive的安装部署

安装的三种模式:

内嵌模式:元数据保持在内嵌的derby模式,只允许一个会话连接
本地独立模式:在本地安装Mysql,把元数据放到Mysql内
远程模式:元数据放置在远程的Mysql数据库

1. 利用Xftp工具将hive二进制安装包上传到HADOOP集群第一个节点node1上的/opt/uploads/目录,并解压,只需安装在hadoop集群上的其中一个节点就行

Hive基础概念、安装部署与基本使用

输入命令:  tar -zxvf apache-hive-2.2.0-bin.tar.gz 

   移动apache-hive-2.2.0-bin到/opt/app/目录: mv apache-hive-2.2.0-bin  /opt/app/

Hive基础概念、安装部署与基本使用

Hive基础概念、安装部署与基本使用

2. 配置环境变量,编辑/etc/profile,并生效环境变量,输入如下命令:

sudo vi /etc/profile

添加如下内容:

export HIVE_HOME=/opt/app/apache-hive-2.2.0-bin

export PATH=${HIVE_HOME}/bin:$PATH

Hive基础概念、安装部署与基本使用

source /etc/profile

3. 修改hive配置文件

进入hive配置文件的目录,cd /opt/app/apache-hive-2.2.0-bin/conf/

修改hive-env.sh文件,将以下内容写入到hive-env.sh文件中:

export HADOOP_HOME=/opt/app/hadoop-2.9.0
export JAVA_HOME=/usr/lib/java/jdk1.8.0_151
export HIVE_HOME=/opt/app/apache-hive-2.2.0-bin

4. 修改hive-log4j2.properties.template文件复制一份,重命名为hive-log4j2.properties

进入hive配置文件的目录,cd /opt/app/apache-hive-2.2.0-bin/conf/

 cp  hive-log4j2.properties.template  hive-log4j2.properties

5. 配置远程登录模式

touch hive-site.xml

将以下信息写入到hive-site.xml文件中,内容如下:

<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://192.168.187.200:3306/hive?createDatabaseIfNotExist=true&useSSL=false</value>
<description>JDBC connect string for a JDBC metastore</description>
</property> <property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property> <property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property> <property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>admin</value>
<description>password to use against metastore database</description>
</property>
</configuration>

6. 安装mysql并配置hive数据库及权限

①安装mysql数据库及客户端并启动,如果mysql已安装则忽略

yum install mysql-server
yum install mysql
service mysqld start

②配置hive元数据库

create database hivedb

③对hive元数据库进行赋权,开放远程连接,开放localhost连接

grant all privileges on *.* to root@"%" identified by "root" with grant option;
grant all privileges on *.* to root@"localhost" identified by "root" with grant option;
flush privileges;

④放置jdbc驱动类

通过Xftp工具,把mysql-connector-java-5.1.27.jar包放置在hive安装目录下lib里面。

7. 初始化schema

./schematool -initSchema -dbType mysql createDatabaseIfNotExist=true (这个是hive2.20版本以上的,新增)

8. 运行hive命令即可启动hive

hive

8.Hive的使用方式

8.1 通过Hive交互shell

进入在Hive的安装目录下bin目录里找到命令 hive

Hive基础概念、安装部署与基本使用

输入命令 ./hive 进入hive的shell命令界面

Hive基础概念、安装部署与基本使用

Hive基础概念、安装部署与基本使用

8.2 通过Hive thrift服务

这种方式是把Hive启动为一个服务器,其他节点可以用beeline去连接Hive服务器。

进入到Hive安装目录下bin目录里,通过hiveserver2命令启动hive作为一个服务器

Hive基础概念、安装部署与基本使用

通过hiveserver2启动,启动方式有两种:

①启动为前台:./hiveserver2

Hive基础概念、安装部署与基本使用

②启动为后台: nohup ./hiveserver2  1>/var/log/hiveserver.log  2>/var/log/hiveserver.err &

Hive基础概念、安装部署与基本使用

启动成功后,可以在别的节点上用Hive安装目录下bin目录里的beeline命令去连接

Hive基础概念、安装部署与基本使用

方式(1)

./beeline 回车,进入beeline的命令界面

Hive基础概念、安装部署与基本使用

输入命令连接hiveserver2

beeline> !connect jdbc:hive2://hadoop1:10000 (hadoop1是hiveserver2所启动的那台主机名,端口默认是10000)

Hive基础概念、安装部署与基本使用

方式(2)

启动就连接

./beeline -u jdbc:hive2://hadoop1:10000 -n hadoop

Hive基础概念、安装部署与基本使用

接下来就可以执行正常sql查询了

9. HQL基本命令说明

9.1 DDL操作(Data Definition Language数据定义语言,包括建表,修改表结构)

9.1.1 创建表

建表语法

CREATE  [EXTERNAL]  TABLE  [IF  NOT  EXISTS]  table_name
[(col_name  data_type  [COMMENT  col_comment], ...)]
[COMMENT  table_comment]
[PARTITIONED  BY  (col_name  data_type  [COMMENT  col_comment], ...)]
[CLUSTERED  BY  (col_name, col_name, ...)   [SORTED BY  (col_name  [ASC|DESC],...)]   INTO  num_buckets  BUCKETS]
[ROW  FORMAT  row_format]
[STORED  AS  file_format]
[LOCATION  hdfs_path]

说明:

1、CREATE  TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用IF NOT EXISTS选项来忽略这个异常;

2、EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive创建内内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。

3、LIKE 允许用户复制现有的表结构,但是不复制数据。

4、CLUSTERED  BY  (col_name, col_name, ...)   [SORTED  BY  (col_name[ASC|DESC],...)]  INTO  num_buckets  BUCKETS]

对于每一个表(table)或者分区(partition),Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是针对某一列进行桶的组织。Hive采用对列值哈希hash,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。

把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive在处理某些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用Map端连接(Map-side join)高效的实现。比如JOIN操作,对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大减少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

5、ROW  FORMAT  DELIMITED  [FIELDS  TERMINATED  BY  char]
                                                   [COLLECTION  ITEMS  TERMINATED  BY  char]
                                                   [MAP  KEYS  TERMINATED  BY  char]
                                                   [LINES  TERMINATED  BY  char]
                                                   | SERDE  serde_name  [WITH  SERDEPROPERTIES  (property_name=property_value, property_name=property_value, ...)]

用户在建表的时候可以自定义SerDe 或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。

6、STORED  AS  file_format。file_format的类型有 SEQUENCEFILE、TEXTFILE、RCFILE

如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用STORED  AS  SEQUENCEFILE。

具体实例:

1、创建内部表mytable

create table if not exists mytable (sid int, sname string)
row format delimited fields terminated by '\005' stored as textfile;

查看表是否存在: show tables;

查看表的详细结构:desc mytable;

Hive基础概念、安装部署与基本使用

2、创建外部表pageview

create external table if not exists pageview(
pageid int,
page_url string comment 'The page URL'
)
row format delimited fields terminated by ','
location 'hdfs://192.168.187.201:9000/user/hive/warehouse';

查看表是否存在: show tables;

查看表的详细结构:desc pageview;

Hive基础概念、安装部署与基本使用

3、创建分区表invites

create table student(sno int, sname string, sex string, sage int, sdept string)
partitioned by (part string)
row format delimited fields terminated by ','
stored as textfile;

查看表是否存在: show tables;

查看表的详细结构:desc student;

Hive基础概念、安装部署与基本使用

4、创建带桶的表human

create table human(id int, age int, name string)
partitioned by(stat_date string)
clustered by(id) sorted by(age) into 2 buckets
row format delimited fields terminated by ',';

查看表是否存在: show tables;

查看表的详细结构:desc human;

Hive基础概念、安装部署与基本使用

9.1.2 修改表

增加/删除分区

语法结构:

ALTER TABLE table_name ADD [IF NOT EXISTS]
partition_spec [ LOCATION 'location1']
partition_spec [ LOCATION 'location2'] ...
ALTER TABLE table_name DROP partition_spec,partition_spec,...

partition_spec代表 PARTITION(partition_col=partition_col_value,partition_col=partition_col_value, ...)

具体实例:

添加student表的分区:alter table student add partition(part='a') partition(part='b');

添加student表的分区:alter table student add partition(part='c') location '/user/hive/warehouse/student' partition(part='d');

删除student表的分区:alter table student drop partition(part='a');

查看student表的分区:show partitions student;

Hive基础概念、安装部署与基本使用

重命名表

语法结构:

ALTER TABLE table_name RENAME TO  new_table_name;

具体实例:

alter table student rename to student1;

Hive基础概念、安装部署与基本使用

增加/更新列

语法结构:

ALTER  TABLE  table_name  ADD|REPLACE  COLUMNS  (col_name  data_type  [COMMENT  col_comment], ...)

注意:ADD是代表新增一字段,字段位置在所有列后面(partition 列前),REPLACE则是表示替换表中所有字段。

ALTER  TABLE  table_name  CHANGE  [COLUMN]  col_old_name  col_new_name  column_type  [COMMENT  col_comment]  [FIRST|AFTER  column_name]

具体实例:

ADD增加列:

Hive基础概念、安装部署与基本使用

REPLACE替换字段:

Hive基础概念、安装部署与基本使用

9.1.3显示命令

show tables;
show databases;
show partitions table_name;
show functions;
desc extended table_name;
desc formatted table_name;

9.2 DML操作(Data Manipulation Language数据操作语言,包括数据载入导出)

9.2.1 Load

语法结构:

LOAD  DATA  [LOCAL]  INPATH  'filepath'  [OVERWRITE]  INTO  TABLE  tablename  [PARTITION(partcol1=val1, partcol2=val2 ...)]

说明:

1、Load 操作只是单纯的复制/移动操作,将数据文件移动到Hive表对应的位置。

2、LOCAL关键字

如果指定了LOCAL,load命令会去查找本地文件系统中的filepath;如果没有指定LOCAL关键字,则根据inpath中的url查找文件。

3、filepath:

相对路径,例如:project/data1

绝对路径,例如:/user/hive/project/data1

包含模式的完整URI,例如:hdfs://namenode:9000/user/hive/project/data1

4、OVERWRITE关键字

如果使用了OVERWRITE关键字,则目标表(或者分区)中的内容会被删除,然后再将filepath指向的文件/目录中的内容添加到表/分区中。如果目标表(分区)已经有一个文件,并且文件名和filepath中的文件名冲突,那么现有的文件会被新文件所替代。

具体实例:

1、加载相对路径数据

~目录本地路径文件buckets.txt:

Hive基础概念、安装部署与基本使用

buckets.txt文件内容为:

Hive基础概念、安装部署与基本使用

~目录下进入hive的shell界面:

Hive基础概念、安装部署与基本使用

输入命令:load data local inpath 'buckets.txt' into table student partition(part='e');

查看hdfs上是否有文件:dfs -ls /user/hive/warehouse/student/part=e; 不能使用hadoop fs -ls /user/hive/warehouse/student/part=e;

Hive基础概念、安装部署与基本使用

2、加载绝对路径数据

输入命令:load data local inpath '/opt/test/derby.log' into table student partition(part='f');

查看hdfs上是否有文件:dfs -ls /user/hive/warehouse/student/part=f; 

Hive基础概念、安装部署与基本使用

3、加载包含uri模式数据

输入命令:load data inpath 'hdfs://192.168.187.201:9000/wordcount/input/README.txt' into table student partition(part='g');

查看hdfs上是否有文件:dfs -ls /user/hive/warehouse/student/part=g; 

Hive基础概念、安装部署与基本使用

4、OVERWRITE关键字使用

输入命令:load data local inpath '/opt/test/derby.log' overwrite into table student partition(part='g');

查看hdfs上是否有文件:dfs -ls /user/hive/warehouse/student/part=g; 

Hive基础概念、安装部署与基本使用

9.2.2 Insert

①将查询结果插入Hive表

语法结构:

Basic inserts:

INSERT  OVERWRITE  TABLE  tablename1  [PARTITION  (partcol1=val1,  partcol2=val2 ...)]  select  statement1  FROM  tablename

Multiple inserts:

FROM tablename
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol=val1, partcol2=val2 ...)] select statement1
[INSERT OVERWRITE TABLE tablename2 [PARTITION (partcol=val1, partcol2=val2 ...)] select_statement2] ...

Dynamic partition inserts:

INSERT  OVERWRITE  TABLE  tablename  PARTITION  (partcol1[=val1],  partcol2[=val2]  ...)  select  statement  FROM  tablename

具体实例:

1、基本模式插入

将part='e'的查询结果插入part='h'的分区表里面:

insert overwrite table student partition(part='h')
select id,age,name from student where part='e';

查询part='h'的数据记录:select * from student where part='h';

Hive基础概念、安装部署与基本使用

2、多插入模式

from student
insert overwrite table student partition(part='i')
select id,name,sex where part='e'
insert overwrite table student partition(part='j')
select id,name,sex where part='e';

Hive基础概念、安装部署与基本使用

3、自动分区模式

要动态插入分区必需设置:set hive.exec.dynamic.partition.mode=nonstrict;

insert overwrite table student partition(part)
select id,name,sex,part from student where part='j';

Hive基础概念、安装部署与基本使用

② 导出表数据

语法结构:

Basic inserts:

INSERT  OVERWRITE  [LOCAL]  DIRECTORY  directory1  SELECT ...  FROM ...

Multiple inserts:

FROM  tablename

INSERT  OVERWRITE  [LOCAL]  DIRECTORY  directory1  SELECT  ...  FROM  ...

[INSERT  OVERWRITE  [LOCAL]  DIRECTORY  directory2  SELECT  ...  FROM  ...]  ...

具体实例

1、导出文件到本地

insert overwrite local directory '/home/hadoop/student'
select * from student;

执行上面的命令可能会报错Hive IllegalStateException Ambiguous Input path,如图:

Hive基础概念、安装部署与基本使用

这时需要删除student表的所有分区,然后重新load数据文件到指定新建分区,这样就可以恢复正常,如图:

Hive基础概念、安装部署与基本使用

参考资料:https://*.com/questions/41725389/hive-illegalstateexception-ambiguous-input-path

正常执行该命令的情况:

Hive基础概念、安装部署与基本使用

导出到本地的/home/hadoop/student文件查看:

Hive基础概念、安装部署与基本使用

2、导出数据到HDFS

insert overwrite directory 'hdfs://192.168.187.201:9000/user/hive/warehouse/mystudent'
select * from student;

Hive基础概念、安装部署与基本使用

导出到HDFS的hdfs://192.168.187.201:9000/user/hive/warehouse/mystudent文件查看:

Hive基础概念、安装部署与基本使用

9.2.3 SELECT

基本的select操作

语法结构:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list [HAVING condition]]
[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY | ORDER BY col_list] ]
[LIMIT number]

说明:

1、order by 会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时,需要较长的计算时间;

2、sort by 不是全局排序,其在数据进入reducer前完成排序。因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer的输出有序,不保证全局有序;

3、distribute by根据distribute by指定的内容将数据分到同一个reducer。

4、Cluster by 除了具有Distribute by的功能外,还会对该字段进行排序。因此,常常认为cluster by = distribute by + sort by

具体实例:

1、获取前3个学生

select id,name,sex from student where part='a' order by name desc limit 3;

Hive基础概念、安装部署与基本使用

2、查询学生信息按年龄,降序排序。

set mapred.reduce.tasks=4;
select id,name,sex from student sort by name desc;

Hive基础概念、安装部署与基本使用

select id,name,sex from student order by id desc;

Hive基础概念、安装部署与基本使用

 select id,name,sex from student distribute by name;

Hive基础概念、安装部署与基本使用

3、按学生名称汇总学生年龄。

select name,sum(age) from student group by name;

Hive基础概念、安装部署与基本使用

9.2.4 Hive Join

语法结构

join table:
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT | RIGHT | FULL} [OUTER] JOIN table_reference join_condition
| table_reference LEFT SEM | JOIN table_reference join_condition

Hive支持等值连接(equality  joins)、外连接(outer joins)和(left/right joins)。

Hive不支持非等值的连接,因为非等值连接非常难转化到map/reduce任务。另外,Hive支持多于2个表的连接。

写Join查询时,需要注意几个关键点:

1. 只支持等值join

2. 可以 join 多于 2 个表。

3.join 时,每次 map/reduce 任务的逻辑:

4.LEFT,RIGHT 和 FULL OUTER 关键字用于处理 join 中空记录的情况

Join 发生在 WHERE 子句之前

Join 是不能交换位置的。无论是 LEFT 还是 RIGHT join,都是左连接的。

总结

【参考资料】

https://www.cnblogs.com/xing901022/p/5775954.html

https://blog.csdn.net/zimou5581/article/details/82383906

https://blog.csdn.net/HeatDeath/article/details/78917574

https://blog.csdn.net/lifuxiangcaohui/article/details/40589881 hive导入导出功能