Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
可以用DFS中的divide and conquer来去计算,此时会有O(2^h) 的复杂度,所以可以加上memorize的array去优化时间复杂度。最后时间复杂度为 O(h^2)
同时通过 f[x][y] = nums[x][y] + min(f[x + 1][y], f[x + 1][y + 1]) 来得到for loop去循环来得到的结果,其实就是上面那种做法用for loop来写而已。时间复杂度为 O(h^2)
1) 利用DFS, Divide and conquer
class Solution:
def triangle(self, nums):
if not nums or len(nums[0]) == 0:
return 0
mem = [[None]*len(nums) for _ in range(len(nums))]
def helper(nums, x, y):
if x == len(nums) - 1:
return nums[x][y]
if mem[x][y] is not None:
return mem[x][y]
left = helper(nums, x + 1, y)
right = helper(nums, x + 1, y + 1)
mem[x][y] = nums[x][y] + min(left, right)
return mem[x][y]
return helper(nums, 0, 0)
2) 利用for loop并且memorize(#using just O(n) space)
more compact
class Solution(object):
def minimumTotal(self, nums):
"""
:type triangle: List[List[int]]
:rtype: int
"""
n = len(nums)
if n == 0: return 0
mem = [[0] * n for _ in range(2)]
for i in range(n - 1, -1, -1):
for j in range(len(nums[i])):
mem[i%2][j] = nums[i][j] if i == n - 1 else nums[i][j] + min(mem[(i + 1)%2][j], mem[(i + 1)%2][j + 1])
return mem[0][0]