【bzoj3110】[Zjoi2013]K大数查询

时间:2023-11-10 13:32:02

Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

Sample Output

1
2
1

HINT

【样例说明】

第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1

的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是

1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3

大的数是 1 。‍

N,M<=50000,N,M<=50000

a<=b<=N

1操作中abs(c)<=N

2操作中abs(c)<=Maxlongint

一直不是很理解树套树是个什么鬼。
题解告诉我此题为线段树套线段树。一维维护权值,二维维护区间。
精髓还没有领悟到,果真我还是很弱QWQ
 #include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
int a,b,c;
int n,m,sz;
int root[];
int ls[],rs[],sum[],lazy[];
void pushdown(int k,int l,int r){
if ((!lazy[k])||l==r) return;//如果没标记或者已经到了底层
if (!ls[k])ls[k]=++sz;
if (!rs[k])rs[k]=++sz;
int mid=(l+r)>>;
lazy[ls[k]]+=lazy[k];lazy[rs[k]]+=lazy[k];
sum[ls[k]]+=(mid-l+)*lazy[k];
sum[rs[k]]+=(r-mid)*lazy[k];
lazy[k]=;
} void modify(int &k,int l,int r,int a,int b){
if (!k)k=++sz;
pushdown(k,l,r);
if (a==l&&b==r){
lazy[k]++;
sum[k]+=(r-l+);
return;
}
int mid=(l+r)>>;
if (a>mid) modify(rs[k],mid+,r,a,b);
else if (b<=mid) modify(ls[k],l,mid,a,b);
else modify(ls[k],l,mid,a,mid),modify(rs[k],mid+,r,mid+,b);
sum[k]=sum[ls[k]]+sum[rs[k]];
} void insert(){
int l=,r=n,k=;
while (l!=r){
modify(root[k],,n,a,b);
int mid=(l+r)>>;
if (c>mid)l=mid+,k=k<<|;
else r=mid,k=k<<;
}
modify(root[k],,n,a,b);
} int query(int k,int l,int r,int a,int b){
if (!k) return ;
pushdown(k,l,r);
if (a==l&&b==r)return sum[k];
int mid=(l+r)>>;
if (a>mid) return query(rs[k],mid+,r,a,b);
else if (b<=mid) return query(ls[k],l,mid,a,b);
else return query(ls[k],l,mid,a,mid)+query(rs[k],mid+,r,mid+,b);
} int solve(){
int l=,r=n,k=;
while (l!=r){
int t=query(root[k<<],,n,a,b);
int mid=(l+r)>>;
if (t>=c)r=mid,k=k<<;
else l=mid+,k=k<<|,c-=t;
}
return l;
} int main(){
freopen("sj.txt","r",stdin);
freopen("me.txt","w",stdout);
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++){
int f;
scanf("%d%d%d%d",&f,&a,&b,&c);
if (f==)c=n-c+,insert();
else printf("%d\n",n-solve()+);
}
}