POJ 1797 Heavy Transportation SPFA变形

时间:2022-08-24 20:25:03

原题链接:http://poj.org/problem?id=1797

Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 24576   Accepted: 6510

Description

Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

题意

对于一条路径的限制大小,定义为这条路径上最短的那条边。给你一个无向图,问你从1出发到n的所有路径中,限制大小最大是多少。

题解

定义dp[i]表示从1走到 i 时的限制大小的最大值。然后就像spfa那样,每次从队列里面拿点出来松弛,如果松弛成功,则入队。

代码

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#define INF 1000006
#define MAX_N 1003
using namespace std; int d[MAX_N];
int T; struct node {
public:
int u, c; node(int uu, int cc) : u(uu), c(cc) { } node() { }
}; struct edge {
public:
int to, cost; edge(int t, int c) : to(t), cost(c) { } edge() { }
}; queue<node> que;
vector<edge> G[MAX_N];
void spfa(int s) {
que.push(node(s, INF));
d[s] = INF;
while (que.size()) {
node now = que.front();
que.pop();
if (now.c != d[now.u])continue;
int u = now.u;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
int t = min(d[u], G[u][i].cost);
if (t > d[v]) {
d[v] = t;
que.push(node(v, t));
}
}
}
}
int n,m; int main() {
scanf("%d", &T);
int cas = ;
while (T--) {
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)G[i].clear();
while (que.size())que.pop();
memset(d, , sizeof(d));
for (int i = ; i < m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
G[u].push_back(edge(v, c));
G[v].push_back(edge(u, c));
}
spfa();
printf("Scenario #%d:\n%d\n\n", ++cas, d[n]);
}
return ;
}

POJ 1797 Heavy Transportation SPFA变形的更多相关文章

  1. POJ&period;1797 Heavy Transportation &lpar;Dijkstra变形&rpar;

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  2. POJ 1797 Heavy Transportation &sol; SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  3. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  4. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ 1797 &Tab;Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  6. POJ 1797 Heavy Transportation(最大生成树&sol;最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  7. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  8. poj 1797 Heavy Transportation(最短路径Dijkdtra)

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 26968   Accepted: ...

  9. POJ 1797 Heavy Transportation &lpar;最大生成树&rpar;

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

随机推荐

  1. JAAS 是个什么梗

    参考资料 该文中的内容来源于 Oracle 的官方文档.Oracle 在 Java 方面的文档是非常完善的.对 Java 8 感兴趣的朋友,可以从这个总入口 Java SE 8 Documentati ...

  2. IIS 设置默认首页静态页,无静态页,走路由

    在Global.asax文件中添加 protected void Application_BeginRequest(Object sender, EventArgs e)         {      ...

  3. hdu 5653 Bomber Man wants to bomb an Array

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5653 题意:已知炸弹可以炸掉左边L个位置,右边R个位置,那么炸点炸掉的总数是L+R+1.给定每个炸弹的 ...

  4. eclipse key

    让我们按照使用频率来看看我最爱用的一些热键组合.(注:以下内容在Eclipse3.02及一上版本通过测试) . Control-Shift-T: 打开类型(Open type).如果你不是有意磨洋工, ...

  5. 原生js和jquery实现图片轮播特效

    本文给大家分享的是使用原生JS和JQ两种方法分别实现相同的图片轮播特效,十分的实用,也非常方便大家对比学习原生js和jQuery,有需要的小伙伴可以参考下. 1)首先是页面的结构部分对于我这种左右切换 ...

  6. Windows 安装 Scoop

    Scoop介绍 scoop是Windows下的包管理工具 安装环境要求 1,操作环境:win10 2,确保你的 PowerShell 版本 >= 3. win7或许低于3,得升级.如何确认Pow ...

  7. &lbrack;搬运&rsqb; 将 Visual Studio 的代码片段导出到 VS Code

    原文 : A Visual Studio to Visual Studio Code Snippet Converter 作者 : Rick Strahl 译者 : 张蘅水 导语 和原文作者一样,水弟 ...

  8. css效果文字多了就&period;&period;&period;

    开发中经常会遇见这样的问题,一段文字或者一段标题过长了,就让超出长度的部分益...替换.具体怎么做的呢?直接上代码: <style> *{ margin: 0; padding: 0; } ...

  9. day03---基本数据类型、运算符、与用户交互

    day03 基本数据类型: 数据类型指的是变量值的类型,变量值之所以区分类型,是因为变量值是用来记录一种事物的状态,而不同的事物有不同的事物状态,对应着也必须必须用不同的变量类型去衡量. 分类: 数字 ...

  10. rx&period;js 的冷和热观察

    http://cn.rx.js.org/manual/overview.html#h213 https://rxjs-cn.github.io/rxjs5-ultimate-cn/content/ho ...