Oracle GoldenGate是Oracle公司的实时数据复制软件,支持关系型数据库和多种大数据平台。从GoldenGate 12.2开始,GoldenGate支持直接投递数据到Kafka等平台,而不用通过Java二次开发。在数据复制过程中,GoldenGate充当Kafka Producer的角色,从关系 型数据库解析增量数据,再实时往Kafka平台写入。当前最新的GoldenGate版本是12.3.1.1.1。
从下图可以看出,GoldenGate不仅支持Kafka投递,也支持其它大数据平台的投递。
本文主要讲述如何将增量数据投递到Kafka平台。
环境准备
介质准备
GoldenGate介质下载
http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
kafka的介质可以从kafka,apache.org官网下载。
软件安装
基于 GoldenGate的复制链路中,一般分为源端和目标端,在GoldenGate for kafka场景中,源端一般是关系型数据库,目标端包括GoldenGate for kafka的节点,以及kafka集群。
Kafka的运行需要先安装Zookeeper软件。zookeeper和Kafka的安装步骤可在网络上搜索,不在此赘述。
本文重点讲解GoldenGate for Kafka的功能,GoldenGate for DB的安装配置在此略过。目标端GoldenGate for big data 的安装需要有JDK环境,要求至少1.7及以上版本。安装完JDK之后,需要指定相应的JAVA_HOME环境变量,并将$JAVA_HOME/bin添加到PATH环境变量。
安装GoldenGate的节点要求能访问kafka集群,因此,安装GoldenGate的节点要有kafka lib,并在后面的kafka.props文件中设置对应的路径。
GoldenGate的安装介质是一个ZIP压缩包,解压之后,再继续解压对应的tar即安装完成。安装之后的目录下有示例可供参考:
GoldenGate for kafka配置
GoldenGate投递进程参数
REPLICAT myka -- add replicat myka, exttrail ./dirdat/ea TARGETDB LIBFILE libggjava.so SET property=dirprm/kafka.props REPORTCOUNT EVERY 1 MINUTES, RATE GROUPTRANSOPS 10000 MAP gg_src.*, TARGET gg_src.*; |
Kafka相关的属性
hadoop@ubuntu2:/opt/GoldenGate12.2.1.1/dirprm$ more kafka.props
gg.handlerlist = kafkahandler gg.handler.kafkahandler.type = kafka gg.handler.kafkahandler.KafkaProducerConfigFile=custom_kafka_producer.properties gg.handler.kafkahandler.TopicName =mykaf4 gg.handler.kafkahandler.format =avro_op gg.handler.kafkahandler.SchemaTopicName=mySchemaTopic gg.handler.kafkahandler.BlockingSend =false gg.handler.kafkahandler.includeTokens=false gg.handler.kafkahandler.mode =tx goldengate.userexit.timestamp=utc goldengate.userexit.writers=javawriter javawriter.stats.display=TRUE javawriter.stats.full=TRUE gg.log=log4j gg.log.level=INFO gg.report.time=30sec gg.classpath=dirprm/:/opt/kafka/libs/*: javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=ggjava/ggjava.jar hadoop@ubuntu2:/opt/GoldenGate12.2.1.1/dirprm$ more custom_kafka_producer.properties bootstrap.servers=localhost:9092 acks=1 compression.type=gzip reconnect.backoff.ms=1000 value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer key.serializer=org.apache.kafka.common.serialization.ByteArraySerializer # 100KB per partition batch.size=102400 linger.ms=10000 |
测试
确保zookeeper, kafka相关进程是正常运行的。
启动GoldenGate投递进程
GGSCI (ubuntu2) 12> start myka
Sending START request to MANAGER ...
REPLICAT MYKA starting
查看状态
GGSCI (ubuntu2) 21> info myka
REPLICAT MYKA Last Started 2017-12-18 12:59 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:01 ago)
Process ID 42206
Log Read Checkpoint File ./dirdat/ea000000038
2016-08-28 21:18:20.980481 RBA 2478
统计增量数据,已经写入3条记录。
GGSCI (ubuntu2) 22> stats myka, total
Sending STATS request to REPLICAT MYKA ...
Start of Statistics at 2017-12-18 13:05:09. Replicating from GG_SRC.TB_HIVE to gg_src.TB_HIVE: *** Total statistics since 2017-12-18 12:59:05 *** Total inserts 3.00 Total updates 0.00 Total deletes 0.00 Total discards 0.00 Total operations 3.00 End of Statistics. |
查看kafka集群,使用consumer命令行查看
bin/kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic mykaf4
输出如下3条记录,除字段数据外,还有其它辅助信息,如源表结构信息、源端commit时间、当前插入时间等,输出的信息可以在kafka.props文件中控制。
GG_SRC.TB_HIVEI42016-08-28 12:43:21.97963642017-12-18T12:59:05.368000(00000000380000001916ID1cd&2016-02-08:00:00:00:2016-12-11:11:00:02.000000000 GG_SRC.TB_HIVEI42016-08-28 12:47:24.98154442017-12-18T12:59:05.462000(00000000380000002103IDcd22&2016-02-08:00:00:00:2016-12-11:11:00:02.000000000 GG_SRC.TB_HIVEI42016-08-28 13:18:20.98048142017-12-18T12:59:05.462001(00000000380000002292IDcd22&2016-02-08:00:00:00:2016-12-11:11:00:02.000000000 |
调整输出的格式为XML,修改kafka.props文件,重新执行刚才的投递进程。
gg.handler.kafkahandler.format =xml
GGSCI>stop myka
GGSCI>alter myka, extrba 0
GGSCI>start myka, NOFILTERDUPTRANSACTIONS
使用NOFILTERDUPTRANSACTIONS的目的是禁止OGG跳过已经处理过的事务。
再查看kafka-consumer的输出结果:
可以看到,数据的格式已经变成xml,而且源端每个操作的详细信息都已经记录。
<operation table='GG_SRC.TB_HIVE' type='I' ts='2016-08-28 12:43:21.979636' current_ts='2017-12-18T16:49:00.995000' pos='00000000380000001916' numCols='4'> <col name='ID' index='0'> <before missing='true'/> <after><![CDATA[1]]></after> </col> <col name='NAME' index='1'> <before missing='true'/> <after><![CDATA[cd]]></after> </col> <col name='BIRTH_DT' index='2'> <before missing='true'/> <after><![CDATA[2016-02-08:00:00:00]]></after> </col> <col name='CR_TM' index='3'> <before missing='true'/> <after><![CDATA[2016-12-11:11:00:02.000000000]]></after> </col> </operation> <operation table='GG_SRC.TB_HIVE' type='I' ts='2016-08-28 12:47:24.981544' current_ts='2017-12-18T16:49:00.996000' pos='00000000380000002103' numCols='4'> <col name='ID' index='0'> <before missing='true'/> <after><![CDATA[2]]></after> </col> <col name='NAME' index='1'> <before missing='true'/> <after><![CDATA[cd22]]></after> </col> <col name='BIRTH_DT' index='2'> <before missing='true'/> <after><![CDATA[2016-02-08:00:00:00]]></after> </col> <col name='CR_TM' index='3'> <before missing='true'/> <after><![CDATA[2016-12-11:11:00:02.000000000]]></after> </col> </operation> <operation table='GG_SRC.TB_HIVE' type='I' ts='2016-08-28 13:18:20.980481' current_ts='2017-12-18T16:49:00.996001' pos='00000000380000002292' numCols='4'> <col name='ID' index='0'> <before missing='true'/> <after><![CDATA[3]]></after> </col> <col name='NAME' index='1'> <before missing='true'/> <after><![CDATA[cd22]]></after> </col> <col name='BIRTH_DT' index='2'> <before missing='true'/> <after><![CDATA[2016-02-08:00:00:00]]></after> </col> <col name='CR_TM' index='3'> <before missing='true'/> <after><![CDATA[2016-12-11:11:00:02.000000000]]></after> </col> </operation> |
最后,再修改输出格式为json。
gg.handler.kafkahandler.format =json
GGSCI>stop myka
GGSCI>alter myka, extrba 0
GGSCI>start myka, NOFILTERDUPTRANSACTIONS
检查kafka的输出结果:
{"table":"GG_SRC.TB_HIVE","op_type":"I","op_ts":"2016-08-28 12:43:21.979636","current_ts":"2017-12-18T16:46:23.860000","pos":"00000000380000001916","after":{"ID":"1","NAME":"cd","BIRTH_DT":"2016-02-08:00:00:00","CR_TM":"2016-12-11:11:00:02.000000000"}} {"table":"GG_SRC.TB_HIVE","op_type":"I","op_ts":"2016-08-28 12:47:24.981544","current_ts":"2017-12-18T16:46:23.914000","pos":"00000000380000002103","after":{"ID":"2","NAME":"cd22","BIRTH_DT":"2016-02-08:00:00:00","CR_TM":"2016-12-11:11:00:02.000000000"}} {"table":"GG_SRC.TB_HIVE","op_type":"I","op_ts":"2016-08-28 13:18:20.980481","current_ts":"2017-12-18T16:46:23.914001","pos":"00000000380000002292","after":{"ID":"3","NAME":"cd22","BIRTH_DT":"2016-02-08:00:00:00","CR_TM":"2016-12-11:11:00:02.000000000"}} |
可以看到,kafka上已经是JSON格式的数据,而且包含了相关的时间戳和其它辅助信息。
至此,测试完成。