我就废话不多说了,直接上代码吧!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
# -*- coding: utf-8 -*-
#@Time :2019/7/1 13:34
#@Author :XiaoMa
import torch as t
from torch import nn
#Sequential的三种写法
net1 = nn.Sequential()
net1.add_module( 'conv' ,nn.Conv2d( 3 , 3 , 3 )) #Conv2D(输入通道数,输出通道数,卷积核大小)
net1.add_module( 'batchnorm' ,nn.BatchNorm2d( 3 )) #BatchNorm2d(特征数)
net1.add_module( 'activation_layer' ,nn.ReLU())
net2 = nn.Sequential(nn.Conv2d( 3 , 3 , 3 ),
nn.BatchNorm2d( 3 ),
nn.ReLU()
)
from collections import OrderedDict
net3 = nn.Sequential(OrderedDict([
( 'conv1' ,nn.Conv2d( 3 , 3 , 3 )),
( 'bh1' ,nn.BatchNorm2d( 3 )),
( 'al' ,nn.ReLU())
]))
print ( 'net1' ,net1)
print ( 'net2' ,net2)
print ( 'net3' ,net3)
#可根据名字或序号取出子module
print (net1.conv,net2[ 0 ],net3.conv1)
|
输出结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
net1 Sequential(
(conv): Conv2d( 3 , 3 , kernel_size = ( 3 , 3 ), stride = ( 1 , 1 ))
(batchnorm): BatchNorm2d( 3 , eps = 1e - 05 , momentum = 0.1 , affine = True , track_running_stats = True )
(activation_layer): ReLU()
)
net2 Sequential(
( 0 ): Conv2d( 3 , 3 , kernel_size = ( 3 , 3 ), stride = ( 1 , 1 ))
( 1 ): BatchNorm2d( 3 , eps = 1e - 05 , momentum = 0.1 , affine = True , track_running_stats = True )
( 2 ): ReLU()
)
net3 Sequential(
(conv1): Conv2d( 3 , 3 , kernel_size = ( 3 , 3 ), stride = ( 1 , 1 ))
(bh1): BatchNorm2d( 3 , eps = 1e - 05 , momentum = 0.1 , affine = True , track_running_stats = True )
(al): ReLU()
)
Conv2d( 3 , 3 , kernel_size = ( 3 , 3 ), stride = ( 1 , 1 ))
Conv2d( 3 , 3 , kernel_size = ( 3 , 3 ), stride = ( 1 , 1 ))
Conv2d( 3 , 3 , kernel_size = ( 3 , 3 ), stride = ( 1 , 1 ))
|
以上这篇pytorch实现特殊的Module--Sqeuential三种写法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weixin_38664232/article/details/94410324