OpenCV绘制图像中RGB三个通道的直方图

时间:2023-01-30 17:21:06

一开始是看《OpenCV计算机视觉编程攻略(第2版)》这本书学做直方图,但是书本里说直方图的部分只详细说了黑白图像(单通道)的直方图绘制方法,RGB图像的直方图只说了如何计算,没有说计算完之后如何绘制,自己想了很久也没想到正确的绘制方法。

去查OpenCV的官方文档,里面的例子只说了如何绘制H和S两通道的直方图,很多函数的用法也没搞清楚。

后来在网上看别人的程序,找到有绘制HSV三通道直方图的程序,花了一点时间一行一行地看,并且结合自己已经学过的知识把程序改成绘制RGB三通道的直方图的程序。

histogram.h:

#ifndef HISTOGRAM_H
#define HISTOGRAM_H #include <opencv2\opencv.hpp> #include <iostream>
#include <string> class Histogram
{
private:
int histSize[]; //直方图中箱子的数量
float hranges[]; //值范围
const float * ranges[]; //值范围的指针
int channels[]; //要检查的通道数量 public:
Histogram();
cv::Mat getHistogram(const cv::Mat & image);
std::vector<cv::Mat> getHistogramImage(const cv::Mat & image, int zoom = );
static std::vector<cv::Mat> getImageOfHistogram(const cv::Mat & hist, int zoom);
}; #endif

histogram.cpp:

#include "histogram.h"

Histogram::Histogram()
{
histSize[] = ;
histSize[] = ;
histSize[] = ;
hranges[] = 0.0;
hranges[] = 256.0;
ranges[] = hranges;
ranges[] = hranges;
ranges[] = hranges;
channels[] = ;
channels[] = ;
channels[] = ;
} cv::Mat Histogram::getHistogram(const cv::Mat & image)
{
cv::Mat hist; hranges[] = 0.0;
hranges[] = 256.0;
channels[] = ;
channels[] = ;
channels[] = ; cv::calcHist(&image, , channels, cv::Mat(), hist, , histSize, ranges); return hist;
} std::vector<cv::Mat> Histogram::getHistogramImage(const cv::Mat & image, int zoom)
{
cv::Mat hist = getHistogram(image); return Histogram::getImageOfHistogram(hist, zoom);
} std::vector<cv::Mat> Histogram::getImageOfHistogram(const cv::Mat & hist, int zoom)
{
int scale = ; float hist_b[];
float hist_g[];
float hist_r[];
memset(hist_b, , * sizeof(float));
memset(hist_g, , * sizeof(float));
memset(hist_r, , * sizeof(float)); //计算三个通道的直方图
for(int b = ; b < ; b ++ )
{
for(int g = ; g < ; g ++)
{
for(int r = ; r < ; r ++)
{
float binVal = hist.at<float>(b, g, r);
hist_b[b] += binVal;
hist_g[g] += binVal;
hist_r[r] += binVal;
}
}
} //获得三个通道直方图中的最大值
double max_b = 0.0, max_g = 0.0,max_r = 0.0;
for(int i = ; i < ; i ++)
{
if(hist_b[i] > max_b)
{
max_b = hist_b[i];
}
}
for(int i = ; i < ; i ++)
{
if(hist_g[i] > max_g)
{
max_g = hist_g[i];
}
}
for(int i = ; i < ; i ++)
{
if(hist_r[i] > max_r)
{
max_r = hist_r[i];
}
} //初始化空的图
cv::Mat b_img = cv::Mat::zeros(, * scale, CV_8UC3);
cv::Mat g_img = cv::Mat::zeros(, * scale, CV_8UC3);
cv::Mat r_img = cv::Mat::zeros(, * scale, CV_8UC3); //绘制三个通道的直方图
for(int i = ; i < ; i ++)
{
int intensity = cvRound(hist_b[i] * b_img.rows / max_b);
cv::rectangle(b_img, cv::Point(i * scale, b_img.rows - intensity), cv::Point((i + ) * scale - , b_img.rows - ), cv::Scalar(, ,), );
}
for(int i = ; i < ; i ++)
{
int intensity = cvRound(hist_g[i] * g_img.rows / max_g);
cv::rectangle(g_img, cv::Point(i * scale, g_img.rows - intensity), cv::Point((i + ) * scale - , g_img.rows - ), cv::Scalar(, , ), );
}
for(int i = ; i < ; i ++)
{
int intensity = cvRound(hist_r[i] * r_img.rows / max_r);
cv::rectangle(r_img, cv::Point(i * scale, r_img.rows - intensity), cv::Point((i + ) * scale - , r_img.rows - ), cv::Scalar(, , ), );
} std::vector<cv::Mat> imgs;
imgs.push_back(b_img);
imgs.push_back(g_img);
imgs.push_back(r_img); return imgs;
}

main.cpp:

#include <opencv2\opencv.hpp>

#include <iostream>
#include <string> #include "histogram.h" using namespace std; int main()
{
cv::Mat image = cv::imread("animal.jpg");
cv::imshow("image", image); Histogram h;
std::vector<cv::Mat> imgs = h.getHistogramImage(image); cv::namedWindow("B");
cv::imshow("B", imgs[]);
cv::namedWindow("G");
cv::imshow("G", imgs[]);
cv::namedWindow("R");
cv::imshow("R", imgs[]); cv::waitKey(); return ;
}

运行结果:

OpenCV绘制图像中RGB三个通道的直方图

参考资料:

http://blog.csdn.net/ljbkiss/article/details/7420429