lua解析脚本过程中的关键数据结构介绍

时间:2023-02-10 17:18:02

在这一篇文章中我先来介绍一下lua解析一个脚本文件时要用到的一些关键的数据结构,为将来的一系列代码分析打下一个良好的基础。在整个过程中,比较重要的几个源码文件分别是:llex.h,lparse.h、lobject.h和lopcode.h。

在llex.h中

 typedef struct Token {
int token;
SemInfo seminfo;
} Token;

Token代表了一个词法单元,其中token表示词法类型如TK_NAME、TK_NUMBER等如果不是这些类型则存放则词素的字符表示,例如分析的代码会这么判断词素单元:

 switch (ls->t.token) {
case '(': {
//...
}
case TK_NAME: {
//...
}
default: {
//...
}

在Token中SemInfo存放了一些语义相关的一些内容信息

 typedef union {
lua_Number r;
TString *ts;
} SemInfo; /* semantics information */

其中当token是数字是内容存放在r中,其他情况存放在ts指向的TString中。

下面是最重要的一个数据结构之一

 typedef struct LexState {
int current; /* current character (charint) */
int linenumber; /* input line counter */
int lastline; /* line of last token `consumed' */
Token t; /* current token */
Token lookahead; /* look ahead token */
struct FuncState *fs; /* `FuncState' is private to the parser */
struct lua_State *L;
ZIO *z; /* input stream */
Mbuffer *buff; /* buffer for tokens */
TString *source; /* current source name */
char decpoint; /* locale decimal point */
} LexState;

LexState不仅用于保存当前的词法分析状态信息,而且也保存了整个编译系统的全局状态。current指向了当前字符,t存放了当前的toekn,lookahead存放了向前看的token,由此我认为lua应该是ll(1)的~哈哈(不知道对不对)。fs指向了parser当前解析的函数的一些相关的信息,L指向了当前lua_State结构,z指向输入流,buff指向了token buffer,其他的看注释吧。

下面看看lparse.h文件中的重要结构:

 typedef struct expdesc {
expkind k;
union {
struct { int info, aux; } s;
lua_Number nval;
} u;
int t; /* patch list of `exit when true' */
int f; /* patch list of `exit when false' */
} expdesc;

expdesc是存放了表达式的相关描述信息,k是表达式的种类,u在不同的表达式中有不同的含义。

 typedef struct upvaldesc {
lu_byte k;
lu_byte info;
} upvaldesc;

upvaldesc是存放了upval的相关描述信息。

最后是本文件中最重要的结构:

 typedef struct FuncState {
Proto *f; /* current function header */
Table *h; /* table to find (and reuse) elements in `k' */
struct FuncState *prev; /* enclosing function */
struct LexState *ls; /* lexical state */
struct lua_State *L; /* copy of the Lua state */
struct BlockCnt *bl; /* chain of current blocks */
int pc; /* next position to code (equivalent to `ncode') */
int lasttarget; /* `pc' of last `jump target' */
int jpc; /* list of pending jumps to `pc' */
int freereg; /* first free register */
int nk; /* number of elements in `k' */
int np; /* number of elements in `p' */
short nlocvars; /* number of elements in `locvars' */
lu_byte nactvar; /* number of active local variables */
upvaldesc upvalues[LUAI_MAXUPVALUES]; /* upvalues */
unsigned short actvar[LUAI_MAXVARS]; /* declared-variable stack */
} FuncState;

在编译过程中,使用FuncState结构体来保存一个函数编译的状态数据。其中,f指向了本函数的协议描述结构体,prev指向了其父函数的FuncState描述,因为在lua中可以在一个函数中定义另一个函数,因此当parse到一个函数的内部函数的定义时会new一个FuncState来描述内部函数,同时开始parse这个内部函数,将这个FuncState的prev指向其外部函数的FuncState,prev变量用来引用外围函数的FuncState,使当前所有没有分析完成的FuncState形成一个栈结构。bl指向当前parse的block,在一个函数中会有很多block代码,lua会将这些同属于同一个函数的block用链表串联起来。jpc是一个OP_JMP指令的链表,因为lua是一遍过的parse,在开始的时候有一些跳转指令不能决定其跳转位置,因此jpc将这些pending jmp指令串联起来,在以后能确定的时候回填,freereg为第一个空闲寄存器的下标,upvalues数组保存了当前函数的所有upvalue,nactvar是当前作用域的局部变量数。

在lparse.c中定义了BlockCnt

 /*
** nodes for block list (list of active blocks)
*/
typedef struct BlockCnt {
struct BlockCnt *previous; /* chain */
int breaklist; /* list of jumps out of this loop */
lu_byte nactvar; /* # active locals outside the breakable structure */
lu_byte upval; /* true if some variable in the block is an upvalue */
lu_byte isbreakable; /* true if `block' is a loop */
} BlockCnt;

Lua使用BlockCnt来保存一个block的数据。与FuncState的分析方法类似,BlockCnt使用一个previous变量保存外围block的引用,形成一个栈结构。

lua解析脚本过程中的关键数据结构介绍

下面介绍一些在lobject.h文件里面的数据结构

 /*
** Function Prototypes
*/
typedef struct Proto {
CommonHeader;
TValue *k; /* constants used by the function */
Instruction *code;
struct Proto **p; /* functions defined inside the function */
int *lineinfo; /* map from opcodes to source lines */
struct LocVar *locvars; /* information about local variables */
TString **upvalues; /* upvalue names */
TString *source;
int sizeupvalues;
int sizek; /* size of `k' */
int sizecode;
int sizelineinfo;
int sizep; /* size of `p' */
int sizelocvars;
int linedefined;
int lastlinedefined;
GCObject *gclist;
lu_byte nups; /* number of upvalues */
lu_byte numparams;
lu_byte is_vararg;
lu_byte maxstacksize;
} Proto;

结构体Proto是lua函数协议的描述,在lua解析脚本时首先会将main chunk代码包裹为一个函数,用main proto描述,接着将里面定义的内部函数一一用Proto结构体描述,将这些Proto的关系用树来组合起来,例如有lua源码文件如下

 a =
function f1()
-- ...
end
function f2()
function f3()
-- ...
end
end

则parse完成后会有如图如下关系

lua解析脚本过程中的关键数据结构介绍

在Proto结构体中,k指向一个const变量数组,存放则函数要用到的常量;code指向lua parse过程中生成的本函数的instruction集合;p就是指向本函数内部定义的函数的那些proto;locvars指向本函数局部变量数组;upvalues指向本函数upvalue变量数组;nups为upvalue的数量;numparams为函数参数的数量;is_vararg表示函数是否接收可变参数;maxstacksize为函数stack的max大小。

在编译期间lua使用Proto描述函数的,当lua vm开始运行vm时需要根据Proto生成相应的Closure来执行vm instructions。

 typedef union Closure {
CClosure c;
LClosure l;
} Closure;

Closure要么代表了c函数,要么为lua函数,在这里我们只看lua函数的LClosure

 #define ClosureHeader \
CommonHeader; lu_byte isC; lu_byte nupvalues; GCObject *gclist; \
struct Table *env
//... ...
typedef struct LClosure {
ClosureHeader;
struct Proto *p;
UpVal *upvals[];
} LClosure;

在LClousre中,p就是指向对应函数的Proto结构体啦,upvals顾名思义就是此closure的upvalue数组罗。在ClosureHeader宏中isC表示此closure是否是c函数,nupvalues为upvalue数目,env指向了此closue运行时的函数环境,在lua中可以用stefenv来改变当前函数的环境,就是改变env变量的指向啦。

最后,在文件lopcode.h中定义了lua vm的指令结构

lua解析脚本过程中的关键数据结构介绍

下面是vm指令的一些定义与描述,我在相应vm指令的上方添加了一些注释

 typedef enum {
/*----------------------------------------------------------------------
name args description
------------------------------------------------------------------------*/
OP_MOVE,/* A B R(A) := R(B) */
//Constants are usually numbers or strings. Each function has its own constant list, or pool.
OP_LOADK,/* A Bx R(A) := Kst(Bx) */
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
//The optimization rule is a simple one: If no other instructions have been generated,
//then a LOADNIL as the first instruction can be optimized away.
OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */
OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ //This instruction is used for object-oriented programming. It is only generated for method calls that use the colon syntax.
//R(B) is the register holding the reference to the table with the method.
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ //The optimization rule is simple: If both terms of a subexpression are numbers,
//the subexpression will be evaluated at compile time.
OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
OP_UNM,/* A B R(A) := -R(B) */
OP_NOT,/* A B R(A) := not R(B) */
//Returns the length of the object in R(B)
OP_LEN,/* A B R(A) := length of R(B) */ //Performs concatenation of two or more strings.
//The source registers must be consecutive, and C must always be greater than B.
OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ //if sBx is 0, the VM will proceed to the next instruction
OP_JMP,/* sBx pc+=sBx */ /*If the boolean result is not A, then skip the next instruction.
Conversely, if the boolean result equals A, continue with the next instruction.*/
OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
//register R(B) is coerced into a boolean.
OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ //If B is 0, parameters range from R(A+1) to the top of the stack.If B is 1, the function has no parameters.
//If C is 1, no return results are saved. If C is 0, then multiple return results are saved, depending on the called function
//CALL always updates the top of stack value.
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
//If B is 1, there are no return values. If B is 0, the set of values from R(A) to the top of the stack is returned.
OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ //FORPREP initializes a numeric for loop, while FORLOOP performs an iteration of a numeric for loop.
OP_FORLOOP,/* A sBx R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ //Performs an iteration of a generic for loop.
OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */
//This instruction is used to initialize array elements in a table.
//If B is 0, the table is set with a variable number of array elements, from register R(A+1) up to the top of the stack.
//If C is 0, the next instruction is cast as an integer, and used as the C value.
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ /*If a local is used as an upvalue, then the local variable need to be placed somewhere,
other wise it will go out of scope and disappear when a lexicalblock enclosing the local variable ends.
CLOSE performs this operation for all affected local variables for do end blocks or loop blocks.
RETURN also does an implicit CLOSE when a function returns.*/
OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
/*Each upvalue corresponds to either a MOVE or a GETUPVAL pseudo-instruction.
Only the B field on either of these pseudo-instructions are significant.*/
//MOVE pseudo-instructions corresponds to local variable R(B) in the current lexical block.
//GETUPVAL pseudo-instructions corresponds upvalue number B in the current lexical block.
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ //If B is 0, VARARG copies as many values as it can based on the number of parameters passed.
//If a fixed number of values is required, B is a value greater than 1.
OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */
} OpCode;