本文实例为大家分享了python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下
首先用python实现简单地神经网络算法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
import numpy as np
# 定义tanh函数
def tanh(x):
return np.tanh(x)
# tanh函数的导数
def tan_deriv(x):
return 1.0 - np.tanh(x) * np.tan(x)
# sigmoid函数
def logistic(x):
return 1 / ( 1 + np.exp( - x))
# sigmoid函数的导数
def logistic_derivative(x):
return logistic(x) * ( 1 - logistic(x))
class neuralnetwork:
def __init__( self , layers, activation = 'tanh' ):
"""
神经网络算法构造函数
:param layers: 神经元层数
:param activation: 使用的函数(默认tanh函数)
:return:none
"""
if activation = = 'logistic' :
self .activation = logistic
self .activation_deriv = logistic_derivative
elif activation = = 'tanh' :
self .activation = tanh
self .activation_deriv = tan_deriv
# 权重列表
self .weights = []
# 初始化权重(随机)
for i in range ( 1 , len (layers) - 1 ):
self .weights.append(( 2 * np.random.random((layers[i - 1 ] + 1 , layers[i] + 1 )) - 1 ) * 0.25 )
self .weights.append(( 2 * np.random.random((layers[i] + 1 , layers[i + 1 ])) - 1 ) * 0.25 )
def fit( self , x, y, learning_rate = 0.2 , epochs = 10000 ):
"""
训练神经网络
:param x: 数据集(通常是二维)
:param y: 分类标记
:param learning_rate: 学习率(默认0.2)
:param epochs: 训练次数(最大循环次数,默认10000)
:return: none
"""
# 确保数据集是二维的
x = np.atleast_2d(x)
temp = np.ones([x.shape[ 0 ], x.shape[ 1 ] + 1 ])
temp[:, 0 : - 1 ] = x
x = temp
y = np.array(y)
for k in range (epochs):
# 随机抽取x的一行
i = np.random.randint(x.shape[ 0 ])
# 用随机抽取的这一组数据对神经网络更新
a = [x[i]]
# 正向更新
for l in range ( len ( self .weights)):
a.append( self .activation(np.dot(a[l], self .weights[l])))
error = y[i] - a[ - 1 ]
deltas = [error * self .activation_deriv(a[ - 1 ])]
# 反向更新
for l in range ( len (a) - 2 , 0 , - 1 ):
deltas.append(deltas[ - 1 ].dot( self .weights[l].t) * self .activation_deriv(a[l]))
deltas.reverse()
for i in range ( len ( self .weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self .weights[i] + = learning_rate * layer.t.dot(delta)
def predict( self , x):
x = np.array(x)
temp = np.ones(x.shape[ 0 ] + 1 )
temp[ 0 : - 1 ] = x
a = temp
for l in range ( 0 , len ( self .weights)):
a = self .activation(np.dot(a, self .weights[l]))
return a
|
使用自己定义的神经网络算法实现一些简单的功能:
小案例:
x: y
0 0 0
0 1 1
1 0 1
1 1 0
1
2
3
4
5
6
7
8
9
10
|
from nn.neuralnetwork import neuralnetwork
import numpy as np
nn = neuralnetwork([ 2 , 2 , 1 ], 'tanh' )
temp = [[ 0 , 0 ], [ 0 , 1 ], [ 1 , 0 ], [ 1 , 1 ]]
x = np.array(temp)
y = np.array([ 0 , 1 , 1 , 0 ])
nn.fit(x, y)
for i in temp:
print (i, nn.predict(i))
|
发现结果基本机制,无限接近0或者无限接近1
第二个例子:识别图片中的数字
导入数据:
1
2
3
4
5
6
7
8
|
from sklearn.datasets import load_digits
import pylab as pl
digits = load_digits()
print (digits.data.shape)
pl.gray()
pl.matshow(digits.images[ 0 ])
pl.show()
|
观察下:大小:(1797, 64)
数字0
接下来的代码是识别它们:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import labelbinarizer
from nn.neuralnetwork import neuralnetwork
from sklearn.cross_validation import train_test_split
# 加载数据集
digits = load_digits()
x = digits.data
y = digits.target
# 处理数据,使得数据处于0,1之间,满足神经网络算法的要求
x - = x. min ()
x / = x. max ()
# 层数:
# 输出层10个数字
# 输入层64因为图片是8*8的,64像素
# 隐藏层假设100
nn = neuralnetwork([ 64 , 100 , 10 ], 'logistic' )
# 分隔训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y)
# 转化成sklearn需要的二维数据类型
labels_train = labelbinarizer().fit_transform(y_train)
labels_test = labelbinarizer().fit_transform(y_test)
print ( "start fitting" )
# 训练3000次
nn.fit(x_train, labels_train, epochs = 3000 )
predictions = []
for i in range (x_test.shape[ 0 ]):
o = nn.predict(x_test[i])
# np.argmax:第几个数对应最大概率值
predictions.append(np.argmax(o))
# 打印预测相关信息
print (confusion_matrix(y_test, predictions))
print (classification_report(y_test, predictions))
|
结果:
矩阵对角线代表预测正确的数量,发现正确率很多
这张表更直观地显示出预测正确率:
共450个案例,成功率94%
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.cnblogs.com/xuyiqing/p/8797048.html