简诉
最近有个数据需要分类处理,是一批含有白天跟夜晚的视频数据,需要进行区分开来,单个视频严格是只有一个场景的,比如说白天整个视频就一定是白天,因为数据量有些大,几千个视频,所以就使用代码简单区分下,最后运行结果还可以,准确率百分之80十多,当然本批数据不用太严格,所以代码区分完全够了。
逻辑
- opencv读取视频
- 视频帧图片转为灰度值图片
- 检测偏暗元素所占整张图片的比例,大于一定阈值就认为该视频为黑夜。
- 选取一部分视频进行判断,并不是整个视频跑完。
- 当这部分视频帧为黑夜占比选取全部视频帧的50%时认为该视频为黑夜环境,移动该视频文件到另外一个文件夹。
结果
最初先测试9个视频,100%分类正确。
在进行多次阈值预设后,选取一个比较合适的阈值进行处理,准确率大概86%左右。
源码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
import cv2
import numpy as np
import os,time
import shutil
def getimgnamebyeverydir(file_dir,videoproperty):
filenamewithpath = []
filename = []
filedir = []
for root, dirs, files in os.walk(file_dir):
for file in files:
if os.path.splitext( file )[ 1 ] in videoproperty:
filenamewithpath.append(os.path.join(root, file )) # 保存图片路径
filename.append( file ) # 保存图片名称
filedir.append(root[ len (file_dir):]) # 保存图片所在文件夹
return filename,filenamewithpath,filedir
def img_to_gray(img,pic_path):
#把图片转换为灰度图
gray_img = cv2.cvtcolor(img,cv2.color_bgr2gray)
#获取灰度图矩阵的行数和列数
r,c = gray_img.shape[: 2 ]
piexs_sum = r * c #整个图的像素个数
#遍历灰度图的所有像素
#灰度值小于60被认为是黑
dark_points = (gray_img < 60 )
target_array = gray_img[dark_points]
dark_sum = target_array.size #偏暗的像素
dark_prop = dark_sum / (piexs_sum) #偏暗像素所占比例
if dark_prop > = 0.60 : #若偏暗像素所占比例超过0.6,认为为整体环境黑暗的图片
return 1
else :
return 0
if __name__ = = '__main__' :
path = "c:\\users\\administrator\\desktop\\cut_video"
new_path = path + "\\darknight"
if not os.path.exists(new_path):
os.mkdir(new_path)
filename,filenamewithpath,filedir = getimgnamebyeverydir(path, '.mp4' )
for i in range ( len (filenamewithpath)):
video_capture = cv2.videocapture(filenamewithpath[i])
video_size = ( int (video_capture.get(cv2.cap_prop_frame_width)), int (video_capture.get(cv2.cap_prop_frame_height)))
total_frames = int (video_capture.get(cv2.cap_prop_frame_count))
video_fps = int (video_capture.get( 5 ))
start_fps = 2 * video_fps #从2秒开始筛选
end_fps = 6 * video_fps #6秒结束
avg_fps = end_fps - start_fps #总共fps
video_capture. set (cv2.cap_prop_pos_frames, start_fps) #设置视频起点
new_paths = new_path + "\\" + filename[i]
j = 0
count = 0
while true:
success,frame = video_capture.read()
if success:
j + = 1
if (j> = start_fps and j < = end_fps):
flag = img_to_gray(frame,filenamewithpath[i])
if flag = = 1 :
count + = 1
elif (j>end_fps):
break
else :
break
print ( '%s,%s' % (count,avg_fps))
if count> int (avg_fps * 0.48 ): #大于fps50%为黑夜
print ( "%s,该视频为黑夜" % filenamewithpath[i])
video_capture.release() #释放读取的视频,不占用视频文件
time.sleep( 0.2 )
shutil.move(filenamewithpath[i],new_paths)
else :
print ( "%s,该视频为白天" % filenamewithpath[i])
|
到此这篇关于opencv 分类白天与夜景视频的方法的文章就介绍到这了,更多相关opencv 分类白天与夜景视频内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/Cxk___/article/details/111647910