深度学习中对于网络的训练是参数更新的过程,需要注意一种情况就是输入数据未做归一化时,如果前向传播结果已经是[0,0,0,1,0,0,0,0]这种形式,而真实结果是[1,0,0,0,0,0,0,0,0],此时由于得出的结论不惧有概率性,而是错误的估计值,此时反向传播会使得权重和偏置值变的无穷大,导致数据溢出,也就出现了nan的问题。
解决办法:
1、对输入数据进行归一化处理,如将输入的图片数据除以255将其转化成0-1之间的数据;
2、对于层数较多的情况,各层都做batch_nomorlization;
3、对设置Weights权重使用tf.truncated_normal(0, 0.01, [3,3,1,64])生成,同时值的均值为0,方差要小一些;
4、激活函数可以使用tanh;
5、减小学习率lr。
实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets( 'data' ,one_hot = True )
def add_layer(input_data,in_size, out_size,activation_function = None ):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
Biases = tf.Variable(tf.zeros([ 1 , out_size]) + 0.1 )
Wx_plus_b = tf.add(tf.matmul(input_data, Weights), Biases)
if activation_function = = None :
outputs = Wx_plus_b
else :
outputs = activation_function(Wx_plus_b)
#return outputs#, Weights
return { 'outdata' :outputs, 'w' :Weights}
def get_accuracy(t_y):
# global l1
# accu = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(l1['outdata'],1),tf.argmax(t_y,1)), dtype = tf.float32))
global prediction
accu = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(prediction[ 'outdata' ], 1 ),tf.argmax(t_y, 1 )), dtype = tf.float32))
return accu
X = tf.placeholder(tf.float32, [ None , 784 ])
Y = tf.placeholder(tf.float32, [ None , 10 ])
#l1 = add_layer(X, 784, 10, tf.nn.softmax)
#cross_entropy = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(l1['outdata']), reduction_indices= [1]))
#l1 = add_layer(X, 784, 1024, tf.nn.relu)
l1 = add_layer(X, 784 , 1024 , None )
prediction = add_layer(l1[ 'outdata' ], 1024 , 10 , tf.nn.softmax)
cross_entropy = tf.reduce_mean( - tf.reduce_sum(Y * tf.log(prediction[ 'outdata' ]), reduction_indices = [ 1 ]))
optimizer = tf.train.GradientDescentOptimizer( 0.000001 )
train = optimizer.minimize(cross_entropy)
newW = tf.Variable(tf.random_normal([ 1024 , 10 ]))
newOut = tf.matmul(l1[ 'outdata' ],newW)
newSoftMax = tf.nn.softmax(newOut)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
#print(sess.run(l1_Weights))
for i in range ( 2 ):
X_train, y_train = mnist.train.next_batch( 1 )
X_train = X_train / 255 #需要进行归一化处理
#print(sess.run(l1['w'],feed_dict={X:X_train}))
#print(sess.run(prediction['w'],feed_dict={X:X_train, Y:y_train}))
#print(sess.run(l1['outdata'],feed_dict={X:X_train, Y:y_train}).shape)
print (sess.run(prediction[ 'outdata' ],feed_dict = {X:X_train, Y:y_train}))
print (sess.run(newOut, feed_dict = {X:X_train}))
print (sess.run(newSoftMax, feed_dict = {X:X_train}))
print (y_train)
#print(sess.run(l1['outdata'], feed_dict={X:X_train}))
sess.run(train, feed_dict = {X:X_train, Y:y_train})
if i % 100 = = 0 :
#print(sess.run(cross_entropy, feed_dict={X:X_train, Y:y_train}))
accuracy = get_accuracy(mnist.test.labels)
print (sess.run(accuracy,feed_dict = {X:mnist.test.images}))
#if i%100==0:
#print(sess.run(prediction, feed_dict={X:X_train}))
#print(sess.run(cross_entropy, feed_dict={X:X_train,Y:y_train}))
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/fireflychh/article/details/73691373