算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域)、灰度图直方图、初始种子图、区域生长结果图。
另外,不管时初始种子选择还是区域生长,阈值选择很重要。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
import cv2
import numpy as np
import matplotlib.pyplot as plt
#初始种子选择
def originalSeed(gray, th):
ret, thresh = cv2.cv2.threshold(gray, th, 255 , cv2.THRESH_BINARY) #二值图,种子区域(不同划分可获得不同种子)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ( 3 , 3 )) #3×3结构元
thresh_copy = thresh.copy() #复制thresh_A到thresh_copy
thresh_B = np.zeros(gray.shape, np.uint8) #thresh_B大小与A相同,像素值为0
seeds = [ ] #为了记录种子坐标
#循环,直到thresh_copy中的像素值全部为0
while thresh_copy. any ():
Xa_copy, Ya_copy = np.where(thresh_copy > 0 ) #thresh_A_copy中值为255的像素的坐标
thresh_B[Xa_copy[ 0 ], Ya_copy[ 0 ]] = 255 #选取第一个点,并将thresh_B中对应像素值改为255
#连通分量算法,先对thresh_B进行膨胀,再和thresh执行and操作(取交集)
for i in range ( 200 ):
dilation_B = cv2.dilate(thresh_B, kernel, iterations = 1 )
thresh_B = cv2.bitwise_and(thresh, dilation_B)
#取thresh_B值为255的像素坐标,并将thresh_copy中对应坐标像素值变为0
Xb, Yb = np.where(thresh_B > 0 )
thresh_copy[Xb, Yb] = 0
#循环,在thresh_B中只有一个像素点时停止
while str (thresh_B.tolist()).count( "255" ) > 1 :
thresh_B = cv2.erode(thresh_B, kernel, iterations = 1 ) #腐蚀操作
X_seed, Y_seed = np.where(thresh_B > 0 ) #取处种子坐标
if X_seed.size > 0 and Y_seed.size > 0 :
seeds.append((X_seed[ 0 ], Y_seed[ 0 ])) #将种子坐标写入seeds
thresh_B[Xb, Yb] = 0 #将thresh_B像素值置零
return seeds
#区域生长
def regionGrow(gray, seeds, thresh, p):
seedMark = np.zeros(gray.shape)
#八邻域
if p = = 8 :
connection = [( - 1 , - 1 ), ( - 1 , 0 ), ( - 1 , 1 ), ( 0 , 1 ), ( 1 , 1 ), ( 1 , 0 ), ( 1 , - 1 ), ( 0 , - 1 )]
elif p = = 4 :
connection = [( - 1 , 0 ), ( 0 , 1 ), ( 1 , 0 ), ( 0 , - 1 )]
#seeds内无元素时候生长停止
while len (seeds) ! = 0 :
#栈顶元素出栈
pt = seeds.pop( 0 )
for i in range (p):
tmpX = pt[ 0 ] + connection[i][ 0 ]
tmpY = pt[ 1 ] + connection[i][ 1 ]
#检测边界点
if tmpX < 0 or tmpY < 0 or tmpX > = gray.shape[ 0 ] or tmpY > = gray.shape[ 1 ]:
continue
if abs ( int (gray[tmpX, tmpY]) - int (gray[pt])) < thresh and seedMark[tmpX, tmpY] = = 0 :
seedMark[tmpX, tmpY] = 255
seeds.append((tmpX, tmpY))
return seedMark
path = "_rg.jpg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#hist = cv2.calcHist([gray], [0], None, [256], [0,256])#直方图
seeds = originalSeed(gray, th = 253 )
seedMark = regionGrow(gray, seeds, thresh = 3 , p = 8 )
#plt.plot(hist)
#plt.xlim([0, 256])
#plt.show()
cv2.imshow( "seedMark" , seedMark)
cv2.waitKey( 0 )
|
以上这篇关于初始种子自动选取的区域生长实例(python+opencv)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/er-gou-zi/p/12016951.html