pandas有groupby分组函数和sort_values排序函数,但是如何对dataframe分组之后排序呢?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In [70]: df = pd.DataFrame(((random.randint(2012, 2016), random.choice(['tech', 'art', 'office']), '%dk-%dk'%(random.randint(2,10), random.randint(10, 20)), '') for _ in xrange(10000)), columns=['publish_time', 'classf', 'salary', 'title'])
In [71]: df.head()
Out[71]:
publish_time classf salary title
0 2012 art 2k-19k
1 2014 office 5k-17k
2 2013 office 2k-10k
3 2013 art 5k-14k
4 2013 art 2k-14k
In [72]: df.groupby(['publish_time', 'classf', 'salary']).count()['title'].groupby(level=0, group_keys=False).nlargest(10)
Out[72]:
publish_time classf salary
2012 art 7k-13k 18
4k-13k 16
tech 3k-12k 14
art 6k-16k 13
8k-15k 13
office 5k-18k 13
tech 4k-14k 13
|
以上这篇pandas多级分组实现排序的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_35318838/article/details/77051109