python3.6.3+opencv3.3.0实现动态人脸捕获

时间:2021-10-26 19:07:22

本文实例为大家分享了python实现动态人脸捕获的具体代码,供大家参考,具体内容如下

步骤

  1. 载入cv2
  2. 捕获摄像头
  3. 获取第一帧图像
  4. 定义人脸识别信息
  5. 开始循环
  6. 对第一帧图像进行识别
  7. 标示脸部特征和方框
  8. 显示帧
  9. 如果一切正常则读入下一帧
  10. 循环直至捕获失败
  11. 如果键入‘q'退出循环
  12. 循环结束清零

程序

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
import numpy as np
 
cv2.namedWindow("Face_Detect") #定义一个窗口
cap=cv2.VideoCapture(0) #捕获摄像头图像
success,frame=cap.read() #读入第一帧
 
classifier=cv2.CascadeClassifier("C:/opencv-3.3.0/data/haarcascades/haarcascade_frontalface_alt.xml")
**#定义人脸识别的分类数据集,需要自己查找,在opencv的目录下,参考上面我的路径**
 
while success:#如果读入帧正常
 size=frame.shape[:2]
 image=np.zeros(size,dtype=np.float16)
 image=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
 cv2.equalizeHist(image,image)
 divisor=8
 h,w=size
 minSize=(int(w/divisor),int(h/divisor)) #像素一定是整数,或者用w//divisor
 
 faceRects=classifier.detectMultiScale(image,1.2,2,cv2.CASCADE_SCALE_IMAGE,minSize)
 #人脸识别
 
 if len(faceRects)> 0:
  for faceRect in faceRects:
   x,y,w,h=faceRect
   cv2.circle(frame,(x+w//2,y+h//2),min(w//2,h//2),(255,0,0),2) #圆形轮廓
   cv2.circle(frame,(x+w//4,y+2*h//5),min(w//8,h//8),(0,255,0),2) #左眼轮廓
   cv2.circle(frame,(x+3*w//4,y+2*h//5),min(w//8,h//8),(0,255,0),2)#右眼轮廓
   cv2.circle(frame,(x+w//2,y+2*h//3),min(w//8,h//8),(0,255,0),2) #鼻子轮廓
   cv2.rectangle(frame, (x, y), (x+w, y+h), (0,0,255),2)   #矩形轮廓
 
 cv2.imshow("Face_Detect",frame)
 #显示轮廓
 success,frame=cap.read()#如正常则读入下一帧
 
 c=chr(key&255)
 if c in ['q','Q',chr(27)]:#如果键入‘q'退出循环
  print('exit'\n)
  break#退出循环
 
 #循环结束则清零
cap.release()
cv2.destroyAllWindows()

运行后如下:

python3.6.3+opencv3.3.0实现动态人脸捕获

python3.6.3+opencv3.3.0实现动态人脸捕获

python3.6.3+opencv3.3.0实现动态人脸捕获

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/m0_37606112/article/details/78278427