考虑xor
运算的自反性
我们可以直接枚举二进制位异或来进行转移
这样边数大约是\(n \log n\)级别的
总复杂度\(\Theta((n\log n+m)\log n)\)
#include"cstdio"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
const int MAXN=1e5+5;
const int MAXM=5e5+5;
int n,m,c,np,s,t;
int h[MAXN],hp[MAXN],ln[MAXN],id[MAXN];
struct rpg{
int li,nx,ln;
}a[MAXM];
void add(int ls,int nx,int ln){a[++np]=(rpg){h[ls],nx,ln};h[ls]=np;}
void up(int x)
{
for(int i=x,j=i>>1;j;i=j,j>>=1){
if(ln[hp[i]]<ln[hp[j]]) swap(hp[i],hp[j]),swap(id[hp[i]],id[hp[j]]);
else break;
}return;
}
void ins(int x)
{
hp[++hp[0]]=x;
id[x]=hp[0];
up(hp[0]);
return;
}
void pop()
{
id[hp[1]]=0;
hp[1]=hp[hp[0]--];
id[hp[1]]=1;
for(int i=1,j=2;j<=hp[0];i=j,j<<=1){
if(j<hp[0]&&ln[hp[j+1]]<ln[hp[j]]) ++j;
if(ln[hp[i]]>ln[hp[j]]) swap(hp[i],hp[j]),swap(id[hp[i]],id[hp[j]]);
else break;
}return;
}
void Dijkstra(int s)
{
memset(ln,0x7f,sizeof(ln));
ln[s]=0;ins(s);
while(hp[0]){
int nw=hp[1];pop();
for(int i=h[nw];i;i=a[i].li){
if(ln[a[i].nx]>ln[nw]+a[i].ln){
ln[a[i].nx]=ln[nw]+a[i].ln;
if(id[a[i].nx]) up(id[a[i].nx]);
else ins(a[i].nx);
}
}for(int i=1;i<=n;i<<=1){
int tmp=nw^i;
if(tmp>n) continue;
if(ln[tmp]>ln[nw]+i*c){
ln[tmp]=ln[nw]+i*c;
if(id[tmp]) up(id[tmp]);
else ins(tmp);
}
}
}return;
}
int main()
{
scanf("%d%d%d",&n,&m,&c);
for(int i=1;i<=m;++i){
int x,y,z;scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}scanf("%d%d",&s,&t);
Dijkstra(s);printf("%d\n",ln[t]);
return 0;
}