Java7引入了Fork Join的概念,来更好的支持并行运算。顾名思义,Fork Join类似与流程语言的分支,合并的概念。也就是说Java7 SE原生支持了在一个主线程中开辟多个分支线程,并且根据分支线程的逻辑来等待(或者不等待)汇集,当然你也可以fork的某一个分支线程中再开辟Fork Join,这也就可以实现Fork Join的嵌套。
有两个核心类ForkJoinPool和ForkJoinTask。
ForkJoinPool实现了ExecutorService接口,起到线程池的作用。所以他的用法和Executor框架的使用时一样的,当然Fork Join本身就是Executor框架的扩展。ForkJoinPool有3个关键的方法,来启动线程,execute(…),invoke(…),submit(…)。具体描述如下:
首先,用户需要创建一个自己的ForkJoinTask。代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
public class MyForkJoinTask extends ForkJoinTask {
/**
*
*/
private static final long serialVersionUID = 1L;
private V value;
private boolean success = false ;
@Override
public V getRawResult() {
return value;
}
@Override
protected void setRawResult(V value) {
this .value = value;
}
@Override
protected boolean exec() {
System.out.println( "exec" );
return this .success;
}
public boolean isSuccess() {
return success;
}
public void setSuccess( boolean isSuccess) {
this .success = isSuccess;
}
}
|
测试ForkJoinPool.invoke(…):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
@Test
public void testForkJoinInvoke() throws InterruptedException, ExecutionException {
ForkJoinPool forkJoinPool = new ForkJoinPool();
MyForkJoinTask task = new MyForkJoinTask();
task.setSuccess( true );
task.setRawResult( "test" );
String invokeResult = forkJoinPool.invoke(task);
assertEquals(invokeResult, "test" );
}
@Test
public void testForkJoinInvoke2() throws InterruptedException, ExecutionException {
final ForkJoinPool forkJoinPool = new ForkJoinPool();
final MyForkJoinTask task = new MyForkJoinTask();
new Thread( new Runnable() {
public void run() {
try {
Thread.sleep( 1000 );
} catch (InterruptedException e) {
}
task.complete( "test" );
}
}).start();
// exec()返回值是false,此处阻塞,直到另一个线程调用了task.complete(...)
String result = forkJoinPool.invoke(task);
System.out.println(result);
}
@Test
public void testForkJoinSubmit() throws InterruptedException, ExecutionException {
final ForkJoinPool forkJoinPool = new ForkJoinPool();
final MyForkJoinTask task = new MyForkJoinTask();
task.setSuccess( true ); // 是否在此任务运行完毕后结束阻塞
ForkJoinTask result = forkJoinPool.submit(task);
result.get(); // 如果exec()返回值是false,在此处会阻塞,直到调用complete
}
|
测试ForkJoinPool.submit(…):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
@Test
public void testForkJoinSubmit() throws InterruptedException, ExecutionException {
final ForkJoinPool forkJoinPool = new ForkJoinPool();
final MyForkJoinTask task = new MyForkJoinTask();
task.setSuccess( true ); // 是否在此任务运行完毕后结束阻塞
ForkJoinTask result = forkJoinPool.submit(task);
result.get(); // 如果exec()返回值是false,在此处会阻塞,直到调用complete
}
@Test
public void testForkJoinSubmit2() throws InterruptedException, ExecutionException {
final ForkJoinPool forkJoinPool = new ForkJoinPool();
final MyForkJoinTask task = new MyForkJoinTask();
forkJoinPool.submit(task);
Thread.sleep( 1000 );
}
@Test
public void testForkJoinSubmit3() throws InterruptedException, ExecutionException {
final ForkJoinPool forkJoinPool = new ForkJoinPool();
final MyForkJoinTask task = new MyForkJoinTask();
new Thread( new Runnable() {
public void run() {
try {
Thread.sleep( 1000 );
} catch (InterruptedException e) {
}
task.complete( "test" );
}
}).start();
ForkJoinTask result = forkJoinPool.submit(task);
// exec()返回值是false,此处阻塞,直到另一个线程调用了task.complete(...)
result.get();
Thread.sleep( 1000 );
}
|
测试ForkJoinPool.execute(…):
1
2
3
4
5
6
|
@Test
public void testForkJoinExecute() throws InterruptedException, ExecutionException {
ForkJoinPool forkJoinPool = new ForkJoinPool();
MyForkJoinTask task = new MyForkJoinTask();
forkJoinPool.execute(task); // 异步执行,无视task.exec()返回值。
}
|
在实际情况中,很多时候我们都需要面对经典的“分治”问题。要解决这类问题,主要任务通常被分解为多个任务块(分解阶段),其后每一小块任务被独立并行计算。一旦计算任务完成,每一快的结果会被合并或者解决(解决阶段)。ForkJoinTask天然就是为了支持“分治”问题的。
分支/合并的完整过程如下:
下面列举一个分治算法的实例。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
public class MaximumFinder extends RecursiveTask<Integer> {
private static final int SEQUENTIAL_THRESHOLD = 5 ;
private final int [] data;
private final int start;
private final int end;
public MaximumFinder( int [] data, int start, int end) {
this .data = data;
this .start = start;
this .end = end;
}
public MaximumFinder( int [] data) {
this (data, 0 , data.length);
}
@Override
protected Integer compute() {
final int length = end - start;
if (length < SEQUENTIAL_THRESHOLD) {
return computeDirectly();
}
final int split = length / 2 ;
final MaximumFinder left = new MaximumFinder(data, start, start + split);
left.fork();
final MaximumFinder right = new MaximumFinder(data, start + split, end);
return Math.max(right.compute(), left.join());
}
private Integer computeDirectly() {
System.out.println(Thread.currentThread() + ' computing: ' + start
+ ' to ' + end);
int max = Integer.MIN_VALUE;
for ( int i = start; i < end; i++) {
if (data[i] > max) {
max = data[i];
}
}
return max;
}
public static void main(String[] args) {
// create a random data set
final int [] data = new int [ 1000 ];
final Random random = new Random();
for ( int i = 0 ; i < data.length; i++) {
data[i] = random.nextInt( 100 );
}
// submit the task to the pool
final ForkJoinPool pool = new ForkJoinPool( 4 );
final MaximumFinder finder = new MaximumFinder(data);
System.out.println(pool.invoke(finder));
}
}
|
以上所示是小编给大家介绍的Java7之forkjoin简介_动力节点Java学院整理,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的,在此也非常感谢大家对服务器之家网站的支持!