Linux学习 :按键信号 之 异步通知

时间:2022-01-22 16:36:00

一、异步通知概念:

  异步通知是指:一旦设备就绪,则主动通知应用程序,应用程序根本就不需要查询设备状态,类似于中断的概念,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是异步的,一个进程不必通过任何操作来等待信号的到达。下面我们就看一下在linux中机制的实现方式。

  在linux中,异步通知是使用信号来实现的,而在linux,大概有30种信号,比如大家熟悉的ctrl+c的SIGINT信号,进程能够忽略或者捕获除过SIGSTOP和SIGKILL的全部信号,当信号背捕获以后,有相应的signal()函数来捕获信号,函数原型:sighandler_t signal(int signum, sighandler_t handler); 第 一个参数就是指定的信号的值,而第二个参数便是此信号的信号处理函数,当为SIG_IGN,表示信号被忽略,当为SIG_DFL时,表示采用系统的默认方 式来处理该信号。当然,信号处理函数也可以自己定义。当signal()调用成功后,返回处理函数handler值,调用失败后返回SIG_ERR。

二、信号处理要点:

①、注册信号处理函数:应用注册
②、发送者:驱动drv
③、接受者:应用app
④、发送方法:kill_fasync (&button_async, SIGIO, POLL_IN);

三、 原子操作:执行过程中不会被别的代码路径所中断的操作

常用原子操作函数:
atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0
atomic_read(atomic_t *v);       //返回原子变量的值
void atomic_inc(atomic_t *v);  //原子变量增加1
void atomic_dec(atomic_t *v);  //原子变量减少1
int atomic_dec_and_test(atomic_t *v);  //自减操作后测试结果,0返回真,否则返回假 

四、信号量
1.定义:struct semaphore sem:
2.初始化:void sema_init(struct semaphore *sem, int val);
     void init_MUTEX(stuct semaphore *sem); //初始化为0
     static DECLARE_MUTEX(button_lock); //定义互斥锁

3.获得信号量: void down(struct semaphore *sem);
         int down_interruptible(struct semaphore *sem);
       int down_trylock(struct semaphore *sem);
4.释放信号量:

       void up(struct semaphore *sem);

五、阻塞:执行设备操作时若不能获得资源,则挂起进入休眠状态,被从调度器的运行队列移走,直到条件满足。

  非阻塞:执行设备操作时若不能获得资源,释放或查询等待条件满足。 : fd = open("/dev/buttons", O_RDWR | O_NONBLOCK);

六、示例代码:
1.驱动代码: signal_drv.c ========================================

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
#include <linux/poll.h>

static struct class *signaldrv_class;
static struct class_device *signaldrv_class_dev;

volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;

volatile unsigned long *gpgcon;
volatile unsigned long *gpgdat;

static DECLARE_WAIT_QUEUE_HEAD(button_waitq);

/* 中断事件标志, 中断服务程序将它置1,signal_drv_read将它清0 */
static volatile int ev_press = 0;

static struct fasync_struct *button_async;

struct pin_desc{
unsigned int pin;
unsigned int key_val;
};

/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
/* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
static unsigned char key_val;

struct pin_desc pins_desc[4] = {
{S3C2410_GPF0, 0x01},
{S3C2410_GPF2, 0x02},
{S3C2410_GPG3, 0x03},
{S3C2410_GPG11, 0x04},
};

//static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1

static DECLARE_MUTEX(button_lock); //定义互斥锁

/*
* 确定按键值
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
struct pin_desc * pindesc = (struct pin_desc *)dev_id;
unsigned int pinval;

pinval = s3c2410_gpio_getpin(pindesc->pin);

if (pinval)
{
/* 松开 */
key_val = 0x80 | pindesc->key_val;
}
else
{
/* 按下 */
key_val = pindesc->key_val;
}

ev_press = 1; /* 表示中断发生了 */
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */

kill_fasync (&button_async, SIGIO, POLL_IN);

return IRQ_RETVAL(IRQ_HANDLED);
}

static int signal_drv_open(struct inode *inode, struct file *file)
{
#if 0
if (!atomic_dec_and_test(&canopen))
{
atomic_inc(&canopen);
return -EBUSY;
}
#endif

if (file->f_flags & O_NONBLOCK)
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else
{
/* 获取信号量 */
down(&button_lock);
}

/* 配置GPF0,2为输入引脚 */
/* 配置GPG3,11为输入引脚 */
request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]);
request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]);
request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]);
request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]);

return 0;
}

ssize_t signal_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
if (size != 1)
return -EINVAL;

if (file->f_flags & O_NONBLOCK)
{
if (!ev_press)
return -EAGAIN;
}
else
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}

/* 如果有按键动作, 返回键值 */
copy_to_user(buf, &key_val, 1);
ev_press = 0;

return 1;
}

int signal_drv_close(struct inode *inode, struct file *file)
{
//atomic_inc(&canopen);
free_irq(IRQ_EINT0, &pins_desc[0]);
free_irq(IRQ_EINT2, &pins_desc[1]);
free_irq(IRQ_EINT11, &pins_desc[2]);
free_irq(IRQ_EINT19, &pins_desc[3]);
up(&button_lock);
return 0;
}

static unsigned signal_drv_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait); // 不会立即休眠

if (ev_press)
mask |= POLLIN | POLLRDNORM;

return mask;
}

static int signal_drv_fasync (int fd, struct file *filp, int on)
{
printk("driver: signal_drv_fasync\n");
return fasync_helper (fd, filp, on, &button_async);
}

static struct file_operations sencod_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = signal_drv_open,
.read = signal_drv_read,
.release = signal_drv_close,
.poll = signal_drv_poll,
.fasync = signal_drv_fasync,
};

int major;
static int signal_drv_init(void)
{
major = register_chrdev(0, "signal_drv", &sencod_drv_fops);

signaldrv_class = class_create(THIS_MODULE, "signal_drv");

signaldrv_class_dev = class_device_create(signaldrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */

gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;

gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
gpgdat = gpgcon + 1;

return 0;
}

static void signal_drv_exit(void)
{
unregister_chrdev(major, "signal_drv");
class_device_unregister(signaldrv_class_dev);
class_destroy(signaldrv_class);
iounmap(gpfcon);
iounmap(gpgcon);
return 0;
}

module_init(signal_drv_init);

module_exit(signal_drv_exit);

MODULE_LICENSE("GPL");

2.测试代码:signaltest.c =============================================

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

/* sixthdrvtest
*/
int fd;

void my_signal_fun(int signum)
{
unsigned char key_val;
read(fd, &key_val, 1);
printf("key_val: 0x%x\n", key_val);
}

int main(int argc, char **argv)
{
unsigned char key_val;
int ret;
int Oflags;

//signal(SIGIO, my_signal_fun);

fd = open("/dev/buttons", O_RDWR | O_NONBLOCK);
if (fd < 0)
{
printf("can't open!\n");
return -1;
}

//fcntl(fd, F_SETOWN, getpid());

//Oflags = fcntl(fd, F_GETFL);

//fcntl(fd, F_SETFL, Oflags | FASYNC);

while (1)
{
ret = read(fd, &key_val, 1);
printf("key_val: 0x%x, ret = %d\n", key_val, ret);
sleep(5);
}

return 0;
}

3.Makefile: ================================

KERN_DIR = /work/system/linux-2.6.22.6

all:
make -C $(KERN_DIR) M=`pwd` modules

clean:
make -C $(KERN_DIR) M=`pwd` modules clean
rm -rf modules.order

obj-m += signal_drv.o

rm -rf modules.order

obj-m+= signal_drv.o

Linux学习 :按键信号 之 异步通知的更多相关文章

  1. Linux设备驱动中的异步通知与异步I&sol;O

    异步通知概念: 异步通知的意识是,一旦设备就绪,则主动通知应用程序,这样应用程序根本就不需要查询设备状态,这一点非常类似于硬件上的“中断”概念,比较准确的称谓是“信号驱动的异步IO”,信号是在软件层次 ...

  2. Linux驱动技术&lpar;四&rpar; &lowbar;异步通知技术

    异步通知的全称是"信号驱动的异步IO",通过"信号"的方式,放期望获取的资源可用时,驱动会主动通知指定的应用程序,和应用层的"信号"相对应, ...

  3. Linux驱动技术&lpar;四&rpar; &lowbar;异步通知技术【转】

    转自:https://www.cnblogs.com/xiaojiang1025/p/6376561.html 异步通知的全称是"信号驱动的异步IO",通过"信号&quo ...

  4. Linux驱动之异步通知的应用

    前面的按键驱动方式都是应用程序通过主动查询的方式获得按键值的: 1.查询方式 2.中断方式 3.poll机制 下面介绍第四种按键驱动的方式 4.异步通知:它可以做到应用程序不用随时去查询按键的状态,而 ...

  5. arm驱动linux异步通知与异步IO【转】

    转自:http://blog.csdn.net/chinazhangzhong123/article/details/51638793 <[ arm驱动] linux异步通知与 异步IO> ...

  6. Smart20学习记录----异步通知

    异步通知: 阻塞与非阻塞访问.poll()函数提供了较好地解决设备访问的机制(应用程序主动访问) 异步通知:一旦设备就绪,则主动通知应用程序,这样应用程序根本就不需要查询设备状态,这一点非常类似于硬件 ...

  7. 蜕变成蝶~Linux设备驱动之异步通知和异步I&sol;O

    在设备驱动中使用异步通知可以使得对设备的访问可进行时,由驱动主动通知应用程序进行访问.因此,使用无阻塞I/O的应用程序无需轮询设备是否可访问,而阻塞访问也可以被类似“中断”的异步通知所取代.异步通知类 ...

  8. 嵌入式Linux驱动学习之路&lpar;十三&rpar;按键驱动-异步通知

    之前的按键方式: 查询: 极度占用CPU资源 中断: 在读的时候产生休眠,在没有信号的时候永远不会返回. poll机制: 在中断的基础上加上超时时间. 异步通知就是通过信号来传送. 首先在应用程序中有 ...

  9. linux驱动的异步通知(kill&lowbar;fasync&comma;fasync)---- 驱动程序向应用程序发送信号

    应用程序 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include < ...

随机推荐

  1. Drools规则

    1.实现业务逻辑和业务规则的分离,实现业务规则的集中管理 2.可以动态的改变业务规则,从而快速响应需求变更 3.业务分析人员也可以参与编辑.维护系统的业务规则 fact:一个普通的JavaBean插入 ...

  2. laravel paginate动态分页

    1.router Route::get('product', function(){ $products = App\Product::paginate(10); return view('produ ...

  3. Codeforces Round &num;249 &lpar;Div&period; 2&rpar;B(贪心法)

    B. Pasha Maximizes time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  4. POJ-1947 Rebuilding Roads (树形DP&plus;分组背包)

    题目大意:将一棵n个节点的有根树,删掉一些边变成恰有m个节点的新树.求最少需要去掉几条边. 题目分析:定义状态dp(root,k)表示在以root为根节点的子树中,删掉一些边变成恰有k个节点的新树需要 ...

  5. servlet实现mysql数据库分页

    一.分页所需要的sql语句准备 select * from table limit m,n其中m是指记录开始的index,从0开始,表示第一条记录n是指从第m+1条开始,取n条. 例如:select ...

  6. 创作型---原型模式&lpar;C&num; ICloneable接口的实现&rpar;

    在软件系统中,当创建一个类的实例的过程很昂贵或很复杂,并且我们需要创建多个这样类的实例时,可以通过对原来对象拷贝一份来完成创建,这样在内存中不需要创建多个相同的类实例,从而减少内存的消耗和达到类实例的 ...

  7. transitionEnd不起作用解决方法

    var show = function(html, className) { className = className || ""; var mask = $("&lt ...

  8. Android中验证输入是否为汉字、手机号及邮箱

    1,验证是否为汉字 Code// 验证昵称 private boolean verifyNickname() { String nickname = edt_username.getText().to ...

  9. html5利用websocket完成的推送功能(tomcat)

    html5利用websocket完成的推送功能(tomcat) 利用websocket和java完成的消息推送功能,服务器用的是tomcat7.0.42,一些东西是自己琢磨的,也不知道恰不恰当,不恰当 ...

  10. python换行语法错误

    a ={ ('住宅', 'https://auction.jd.com/getJudicatureList.html?callback=jQuery4392669&page=1&lim ...