一、前述
Spark中Shuffle的机制可以分为HashShuffle,SortShuffle。
SparkShuffle概念
reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value。
问题:聚合之前,每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分布式的弹性的数据集,RDD的partition极有可能分布在各个节点上。
如何聚合?
– Shuffle Write:上一个stage的每个map task就必须保证将自己处理的当前分区的数据相同的key写入一个分区文件中,可能会写入多个不同的分区文件中。
– Shuffle Read:reduce task就会从上一个stage的所有task所在的机器上寻找属于己的那些分区文件,这样就可以保证每一个key所对应的value都会汇聚到同一个节点上去处理和聚合。
Spark中有两种Shuffle类型,HashShuffle和SortShuffle,Spark1.2之前是HashShuffle默认的分区器是HashPartitioner,Spark1.2引入SortShuffle默认的分区器是RangePartitioner。
二、具体
1、HashShuffle
1) 普通机制
- 普通机制示意图
- 执行流程
a) 每一个map task将不同结果写到不同的buffer中,每个buffer的大小为32K。buffer起到数据缓存的作用。新写的磁盘小文件会追加内容。
b) 每个buffer文件最后对应一个磁盘小文件。
c) reduce task来拉取对应的磁盘小文件。
- 总结
a) maptask的计算结果会根据分区器(默认是hashPartitioner)来决定写入到哪一个磁盘小文件中去。ReduceTask会去Map端拉取相应的磁盘小文件。
b)产生的磁盘小文件的个数:M(map task的个数)*R(reduce task的个数)
- 存在的问题
产生的磁盘小文件过多,会导致以下问题:
a) 在Shuffle Write过程中会产生很多写磁盘小文件的对象。
b) 在Shuffle Read过程中会产生很多读取磁盘小文件的对象。
c) 在JVM堆内存中对象过多会造成频繁的gc,gc还无法解决运行所需要的内存 的话,就会OOM。gc工作的时候是不提供工作的。
d) 在数据传输过程中会有频繁的网络通信,频繁的网络通信出现通信故障的可能性大大增加,一旦网络通信出现了故障会导致shuffle file cannot find 由于这个错误导致的task失败,TaskScheduler不负责重试,由DAGScheduler负责重试Stage。变相的延长执行时间
1) 合并机制
- 合并机制示意图
一个core 一般运行一个task,图中即便一个executor有两个task,也是串行执行的!!!!
- 总结
产生磁盘小文件的个数:C(core的个数)*R(reduce的个数)
2、SortShuffle
1) 普通机制
- 普通机制示意图
- 执行流程
a) map task 的计算结果会写入到一个内存数据结构里面,内存数据结构默认是5M
b) 在shuffle的时候会有一个定时器,不定期的去估算这个内存结构的大小,当内存结构中的数据超过5M时,比如现在内存结构中的数据为5.01M,那么他会申请5.01*2-5=5.02M内存给内存数据结构。
c) 如果申请成功不会进行溢写,如果申请不成功,这时候会发生溢写磁盘。
d) 在溢写之前内存结构中的数据会进行排序分区
e) 然后开始溢写磁盘,写磁盘是以batch的形式去写,一个batch是1万条数据,
f) map task执行完成后,会将这些磁盘小文件合并成一个大的磁盘文件(有序),同时生成一个索引文件。
g) reduce task去map端拉取数据的时候,首先解析索引文件,根据索引文件再去拉取对应的数据。
- 总结
产生磁盘小文件的个数: 2*M(map task的个数)索引文件-和磁盘文件
2) bypass机制(比如wordcount)不需要排序时使用
- bypass机制示意图
- 总结
a) bypass运行机制的触发条件如下:
shuffle reduce task的数量小于spark.shuffle.sort.bypassMergeThreshold的参数值。这个值默认是200。
b)产生的磁盘小文件为:2*M(map task的个数)
【Spark篇】---Spark中Shuffle机制,SparkShuffle和SortShuffle的更多相关文章
-
Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
-
【Spark篇】---Spark中Shuffle文件的寻址
一.前述 Spark中Shuffle文件的寻址是一个文件底层的管理机制,所以还是有必要了解一下的. 二.架构图 三.基本概念: 1) MapOutputTracker MapOutputTracker ...
-
【Spark篇】---Spark调优之代码调优,数据本地化调优,内存调优,SparkShuffle调优,Executor的堆外内存调优
一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体 1.代码调优 1.避免创建重复的RDD,尽 ...
-
Spark中shuffle的触发和调度
Spark中的shuffle是在干嘛? Shuffle在Spark中即是把父RDD中的KV对按照Key重新分区,从而得到一个新的RDD.也就是说原本同属于父RDD同一个分区的数据需要进入到子RDD的不 ...
-
【Spark】Spark的Shuffle机制
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性 ...
-
Spark Shuffle机制详细源码解析
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.Shuff ...
-
Spark性能优化指南-高级篇(spark shuffle)
Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解
-
【Spark Core】任务运行机制和Task源代码浅析1
引言 上一小节<TaskScheduler源代码与任务提交原理浅析2>介绍了Driver側将Stage进行划分.依据Executor闲置情况分发任务,终于通过DriverActor向exe ...
-
Spark记录-Spark性能优化(开发、资源、数据、shuffle)
开发调优篇 原则一:避免创建重复的RDD 通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD:接着对这个RDD执行某个算子操作,然后得到 ...
随机推荐
-
javascript中的事件冒泡、事件捕获和事件执行顺序
谈起JavaScript的 事件,事件冒泡.事件捕获.阻止默认事件这三个话题,无论是面试还是在平时的工作中,都很难避免. DOM事件标准定义了两种事件流,这两种事件流有着显著的不同并且可能对你的应用有 ...
-
Eclipse 安装svn插件及使用
1 安装 参考:http://welcome66.iteye.com/blog/1845176 通过svn插件安装,地址: Links for 1.8.x Release: Eclipse updat ...
-
XOR (莫队)
Time Limit: 2000 ms Memory Limit: 256 MB Description 给定一个含有n个整数的序列 a1, a2,..., an. 定义 f(x,x) = a[x ...
-
解决ajax请求默认不支持重定向问题
1,Ajax默认是不支持重定向的,只局部刷新数据,不跳转页面. 2,后台代码处理: @RequestMapping("/updateCurrentUser") public Str ...
-
IIS7常见错误及解决方法
IIS7常见错误及解决方法 问题一:HTTP 错误 500.19 - Internal Server Error 无法访问请求的页面,因为该页的相关配置数据无效. 详细错误信息模块 IIS We ...
-
C# 窗体间传值
Form1: 父窗体, Form2: 子窗体. 1.父窗体接收子窗体的返回值: public partial class Form1: Form { private void btnOpen_Clic ...
-
Javascript摸拟*落体与上抛运动 说明!
JavaScript 代码 //**************************************** //名称:Javascript摸拟*落体与上抛运动! //作者:Gloot //邮箱 ...
-
Linux上VNC 启动和关闭常见问题
0, 重设密码 [root@yqrh5u2 ~]# vncpasswd Password: Verify: [root@yqrh5u2 ~]# 1, ...
-
Spark 数据倾斜调优
一.what is a shuffle? 1.1 shuffle简介 一个stage执行完后,下一个stage开始执行的每个task会从上一个stage执行的task所在的节点,通过网络传输获取tas ...
-
[Leetcode] spiral matrix ii 螺旋矩阵
Given an integer n, generate a square matrix filled with elements from 1 to n 2 in spiral order. For ...