数据同步DataX

时间:2022-10-14 21:46:20

数据同步那些事儿(优化过程分享)

简介

很久之前就想写这篇文章了,主要是介绍一下我做数据同步的过程中遇到的一些有意思的内容,和提升效率的过程。

当前在数据处理的过程中,数据同步如同血液一般充满全过程,如图:

数据同步DataX

数据同步开源产品对比:

DataX,是淘宝的开源项目,可惜不支持Postgresql

Sqoop,Apache开源项目,同步过程中字段需要严格一致,不方便扩展,不易于二次开发

整体设计思路:

使用生产者消费者模型,中间使用内存,数据不落地,直接插入目标数据

数据同步DataX

优化过程:

1、插入数据部分:

首先生产者通过Jdbc获取源数据内容,放入固定大小的缓存队列,同时消费者不断的从缓存读取数据,根据不同的数据类型分别读取出来,并逐条插入目标数据库。

速度每秒300条,每分钟1.8W条。

这样做表面上看起来非常美好,流水式的处理,来一条处理一下,可是发现插入的速度远远赶不上读取的速度,所以为了提升写入的速度,决定采用批量处理的方法,事例代码:

数据同步DataX
    @Override
public Boolean call() {
long beginTime = System.currentTimeMillis();
this.isRunning.set(true);
try {
cyclicBarrier.await();
int lineNum = 0;
int commitCount = 0; // 缓存数量
List<RowData> tmpRowDataList = new ArrayList<RowData>();// 缓存数组
while (this.isGetDataRunning.get() || this.queue.size() > 0) {
// 从队列获取一条数据
RowData rowData = this.queue.poll(1, TimeUnit.SECONDS);
if (rowData == null) {
logger.info("this.isGetDataRunning:" + this.isGetDataRunning + ";this.queue.size():" + this.queue.size());
Thread.sleep(10000);
continue;
}
// 添加到缓存数组
tmpRowDataList.add(rowData);
lineNum++;
commitCount++;
if (commitCount == SyncConstant.INSERT_SIZE) {
this.insertContractAch(tmpRowDataList); // 批量写入
tmpRowDataList.clear(); // 清空缓存
commitCount = 0;
} if (lineNum % SyncConstant.LOGGER_SIZE == 0) {
logger.info(" commit line: " + lineNum + "; queue size: " + queue.size());
}
} this.insertContractAch(tmpRowDataList); // 批量写入
tmpRowDataList.clear();// 清空缓存
logger.info(" commit line end: " + lineNum);
} catch (Exception e) {
logger.error(" submit data error" , e);
} finally {
this.isRunning.set(false);
}
logger.info(String.format("SubmitDataToDatabase used %s second times", (System.currentTimeMillis() - beginTime) / 1000.00));
return true;
} /**
* 批量插入数据
*
* @param rowDatas
* @return
*/
public int insertContractAch(List<RowData> rowDatas) {
final List<RowData> tmpObjects = rowDatas;
String sql = SqlService.createInsertPreparedSql(tableMetaData); // 获取sql
try {
int[] index = this.jdbcTemplate.batchUpdate(sql, new PreparedStatementSetter(tmpObjects, this.columnMetaDataList));
return index.length;
} catch (Exception e) {
logger.error(" insertContractAch error: " , e);
}
return 0;
} /**
* 处理批量插入的回调类
*/
private class PreparedStatementSetter implements BatchPreparedStatementSetter {
private List<RowData> rowDatas;
private List<ColumnMetaData> columnMetaDataList; /**
* 通过构造函数把要插入的数据传递进来处理
*/
public PreparedStatementSetter(List<RowData> rowDatas, List<ColumnMetaData> columnList) {
this.rowDatas = rowDatas;
this.columnMetaDataList = columnList;
} @Override
public void setValues(PreparedStatement ps, int i) throws SQLException {
RowData rowData = this.rowDatas.get(i);
for (int j = 0; j < rowData.getColumnObjects().length; j++) {
// 类型转换
try {
ColumnAdapterService.setParameterValue(ps, j + 1, rowData.getColumnObjects()[j], this.columnMetaDataList.get(j).getType());
} catch (Exception e) {
ps.setObject(j + 1, null);
}
}
}
}
数据同步DataX

咱们不是需要讲解代码,所以这里截取了代码片段,全部的代码github上有,感兴趣的同学可以看看。PreparedStatement的好处,可以参考文章:http://www.cnblogs.com/liqiu/p/3825544.html

由于增加批量插入的功能,终于速度提升到每秒1000条

2、多线程优化

每秒1000条,速度依然不理想,特别是写的速度跟不上读取的速度,队列是满的,如图:

数据同步DataX

所以只能提升消费者的数量,采用了多消费者的模式:

数据同步DataX

速度提升到每秒3000条。

3、升级读取方式

这时候观察,随着消费者的增加,观察缓存队列经常有空的情况,也就是说生产跟不上消费者速度,如果增加生产者的线程,那么也会增加程序的复杂性,因为势必要将读取的数据进行分割。所以采用Pgdump的方式直接获取数据(并不是所有情况都适用,比如数据中有特殊的分隔符与设定的分隔符一样,或者有分号,单引号之类的)

代码片段如下:

数据同步DataX
    /**
* 将数据放入缓存队列
*/
public void putCopyData() {
DataSourceMetaData dataSource = dataSourceService.getDataSource(syncOptions.getSrcDataSourceName());
String copyCommand = this.getCopyCommand(dataSource, querySql); //获取copy命令
ShellExecuter.execute(copyCommand, queue,columnMetaDatas);
} /**
* 执行copy的shell命令
* @param dataSource
* @param sql
* @return
*/
public String getCopyCommand(DataSourceMetaData dataSource, String sql){
String host = dataSource.getIp();
String user = dataSource.getUserName();
String dataBaseName = dataSource.getDatabaseName();
//String psqlPath = "/Library/PostgreSQL/9.3/bin/psql";
String psqlPath = "/opt/pg93/bin/psql";
String execCopy = psqlPath + " -h " + host + " -U " + user + " " + dataBaseName +" -c \"COPY (" + sql + ") TO STDOUT WITH DELIMITER E'"+ HiveDivideConstant.COPY_COLUMN_DIVIDE+"' CSV NULL AS E'NULL'\" "; // 执行copy命令
LOGGER.info(execCopy);
return execCopy;
}
数据同步DataX

意思就是通过执行一个Shell程序,获取数据,然后读取进程的输出流,不断写入缓存。这样生产者的问题基本都解决了,速度完全取决于消费者写入数据库的速度了。下面是执行Shell的Java方法代码:

数据同步DataX
    public static int execute(String shellPath, LinkedBlockingQueue<RowData> queue, List<ColumnMetaData> columnMetaDatas) {

        int success = -1;
Process pid = null;
String[] cmd; try {
cmd = new String[]{"/bin/sh", "-c", shellPath};
// 执行Shell命令
pid = Runtime.getRuntime().exec(cmd);
if (pid != null) {
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(pid.getInputStream()), SyncConstant.SHELL_STREAM_BUFFER_SIZE);
try {
String line;
while ((line = bufferedReader.readLine()) != null) {
// LOGGER.info(String.format("shell info output [%s]", line));
String[] columnObjects = line.split(HiveDivideConstant.COPY_COLUMN_DIVIDE.toString(), -1);
if (columnObjects.length != columnMetaDatas.size()) {
LOGGER.error(" 待同步的表有特殊字符,不能使用copy [{}] ", line);
throw new RuntimeException("待同步的表有特殊字符,不能使用copy " + line);
}
RowData rowData = new RowData(line.split(HiveDivideConstant.COPY_COLUMN_DIVIDE.toString(), -1));
queue.put(rowData);
}
} catch (Exception ioe) {
LOGGER.error(" execute shell error", ioe);
} finally {
try {
if (bufferedReader != null) {
bufferedReader.close();
}
} catch (Exception e) {
LOGGER.error("execute shell, get system.out error", e);
}
}
success = pid.waitFor();
if (success != 0) {
LOGGER.error("execute shell error ");
}
} else {
LOGGER.error("there is not pid ");
}
} catch (Exception ioe) {
LOGGER.error("execute shell error", ioe);
} finally {
if (null != pid) {
try {
//关闭错误输出流
pid.getErrorStream().close();
} catch (IOException e) {
LOGGER.error("close error stream of process fail. ", e);
} finally {
try {
//关闭标准输入流
pid.getInputStream().close();
} catch (IOException e) {
LOGGER.error("close input stream of process fail.", e);
} finally {
try {
pid.getOutputStream().close();
} catch (IOException e) {
LOGGER.error(String.format("close output stream of process fail.", e));
}
}
}
}
} return success;
}
数据同步DataX

4、内存优化

在上线一段时间之后,发现使用Jdbc方式获取数据,这个进程会占用非常大的内存,并且GC不掉,分析原因,是Postgresql的Jdbc获取数据的时候,会一次将所有数据放入到内存,如果同步的数据表非常大,那么甚至会将内存撑爆。

数据同步DataX

那么优化的方法是设置使Jdbc不是一次全部将数据拿到内存,而是批次获取,代码如下:

con.setAutoCommit(false); //并不是所有数据库都适用,比如hive就不支持,orcle不需要
stmt.setFetchSize(10000); //每次获取1万条记录

整体设计方案:

数据同步DataX

现在这个项目已经开源,代码放在:https://github.com/lihehuo/synchronous