java 轻量级同步volatile关键字简介与可见性有序性与synchronized区别 多线程中篇(十二)

时间:2021-06-08 18:35:20

概念

JMM规范解决了线程安全的问题,主要三个方面:原子性、可见性、有序性,借助于synchronized关键字体现,可以有效地保障线程安全(前提是你正确运用)
之前说过,这三个特性并不一定需要全部同时达到,在有些场景,部分达成也能够做到线程安全。
volatile就是这样一个存在,对可见性和有序性进行保障
java 轻量级同步volatile关键字简介与可见性有序性与synchronized区别 多线程中篇(十二)

可见性

volatile字面意思,易变的,不稳定的,在Java中含义也是如此
想要保证可见性,就要保障一个线程对于数据的操作,能够及时的对其他线程可见
volatile会通知底层,指示这个变量读取时,不要通过本地缓存,而是直接去主存中读取(或者说本地内存失效,必须去主存读取),这样如果一个线程对于数据完成写入到主存,另外线程进行读取时,就可以第一时间读取到新值,而非旧值,所以所谓不稳定,就是指可能会被其他线程同时并发修改,所以你要去主存中去重新读取。
他会让写线程冲刷写缓存,读线程刷新读缓存,简言之就是操作后立刻会刷新数据,读取前也会刷新数据;
以保证最新值可以及时更新到主存以及读线程及时的读取到最新值。
注意:
如果Reader对于这个共享变量x的读取操作有很多个步骤,比如x=1;y=x;y=y+1;y=y+2;等等 最后x=y;,如果没有原子性保障,很显然,如果已经执行过了y=x;再往后的操作过程中,如果x的值再次被改变了,此时Reader中的y是无法改变的,这就出现问题了
所以此处的可见性要注意区分,在某些场景想要线程安全的话,可见性对原子性是有依赖的
可见性指的是在你需要的时刻,如果被别人修改了,重新读取新的,但是如果你用过了,单纯的可见性并不能保证后续没问题。

有序性

volatile关键字将会直接禁止JVM和处理器对关键字修饰的指令重排序,但是对于volatile关键字修饰的前后的、无依赖的指令,可以进行重排序
被volatile修饰的变量,可以认为插入了一个内存屏障,他会进行如下保障:
  • 确保指令重排序时不会将其后面的代码排到内存屏障之前
  • 确保指令重排序时不会将其前面的代码排到内存屏障之后
  • 确保在执行到内存屏障修饰的指令时前面的代码全部执行完成
  • 强制将线程工作内存中值的修改刷新至主内存中
  • 如果是写操作,则会导致其他线程工作内存(CPU Cache)中的缓存数据失效
比如
int x = 0;
int y = 1;
volatile int z=20;
x++;
y--;
在语句volatile int z=20之前,先执行x的定义还是先执行y的定义,我们并不关心,只要能够百分之百地保证在执行到z=20的时候x=0, y=1,同理关于x的自增以及y的自减操作都必须在z=20以后才能发生。这个结果就是上面的逻辑处理后的结果。
综上所述,volatile可以对可见性以及有序性进行保障。
那么volatile的原子性如何?

原子性

如下面示例,共享变量count是volatile的,在add方法中,对他进行自增,运行几次后分别查看结果
package test1;
public class T12 {
public static volatile int count = 0;
public static void add() {
count++;
}
public static void main(String[] args) {
//创建10个线程,每个线程循环1000次,最终结果应该是10,000
for (int i = 0; i < 10; i++) {
new Thread(() -> {
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
// 确认其他线程都结束了,否则不继续执行(确认当前线程组以及子线程组活动线程的个数,JDK8中这个值设置为2),后续有更好的方法完成等待
while (Thread.activeCount() > 2) {
Thread.yield();
}
System.out.println("count: " + count);
}
}

 

10个线程,每个线程1000次循环,按理来说最终的结果应该是1000
从结果可以看得出来,并不是线程安全的,但是既然volatile保障了可见性与有序性,可以推断出来并没有做到原子性
java 轻量级同步volatile关键字简介与可见性有序性与synchronized区别 多线程中篇(十二)
问题出在哪里?
关键在于count++;自增操作,并不是直接的赋值操作,比如x=1;
他可以简单的理解为三个步骤:
  1. 读取count的值;
  2. 操作count的值;
  3. 回写count的值;
volatile可以保障在第一步的时候,读取到了正确的值,但是由于不是原子的,在接下来的操作过程中,count的值,可能已经被更新过了,也就是读取到了旧值
继续使用这个旧值很显然就把别人的更新抹掉了,你读取的1,可能此时应该是2了,但是你操作后还是2,无故的擦除了别人的增加,所以结果才会出现小于10000的情况
因为是自增操作,所以使用旧值会导致小于10000
如果把初始值设置为10000,使用自减count--,使用旧值就可能会导致别人的减量被擦除了,最终大于0,不妨修改为自减运算试一下
从结果看得出来,我们的推断没错,就是使用了旧值
java 轻量级同步volatile关键字简介与可见性有序性与synchronized区别 多线程中篇(十二)
这就是前面说到的线程安全,单纯的依赖可见性是不能保障的,还需要依赖原子性
因为在第一步的时候,尽管获取到的值肯定是最新的,但是接下来的过程中呢?
值仍旧可能被改变,因为并不是原子的
比如,装着饮料的瓶子,你从其中取饮料
可见性可以保障你要倒饮料的时候,瓶子里面是可乐你到出来的是可乐,装的是雪碧,倒出来就是雪碧,但是如果你把可乐倒进自己的杯子里面了,瓶子瞬间换成雪碧,你杯子里面的可乐会变化吗?
回想下之前设计模式中介绍过的单例模式,有一种实现方式是双重检查法
public class LazySingleton {
private LazySingleton() {
} private static volatile LazySingleton singleton = null;
public static LazySingleton getInstance() {
if (singleton == null) {
synchronized (LazySingleton.class) {
if (singleton == null) {
singleton = new LazySingleton();
}
}
}
return singleton;
}
}
注意:

private static volatile  LazySingleton singleton = null;

使用volatile修饰
因为实例创建语句:singleton = new LazySingleton(); ,就不是一个原子操作 
他可能需要下面三个步骤
  • 分配对象需要的内存空间
  • 将singleton指向分配的内存空间
  • 调用构造函数来初始化对象
计算机为了提高执行效率,会做的一些优化,在不影响最终结果的情况下,可能会对一些语句的执行顺序进行调整
也就是上面三个步骤的顺序是不能够保证唯一的
如果先分配对象需要的内存,然后将singleton指向分配的内存空间,最后调用构造方法初始化的话
假如当singleton指向分配的内存空间后,此时被另外线程抢占(由于不是原子操作所以可能被中间抢占)
线程2此时执行到第一个if (singleton == null)
此时不为空,那么不需要等待线程1结束,直接返回singleton了
显然,此时的singleton都还没有完全初始化,就被拿出去使用了
根本问题就在于写操作未结束,就进行了读操作
重排序导致了线程的安全问题
此时可以给 singleton 的声明加上volatile关键字,以保障有序性
上面的两个示例,看起来都是没有保障原子性,但是为什么一个使用volatile修饰就可以,而另外一个则不行?
对于count++,运算结果的正确性依赖count当前的值本身,而且可能存在多个线程对他进行修改,而singleton则不依赖,而且也不会多个线程进行修改
所以说,volatile的使用要看具体的场景,这也是为什么被称之为轻量级的synchronized的原因,他不能从原子性、可见性、有序性三个角度进行保障。
所以从上面这些点也可以看得出来,volatile并不能替代synchronized,很关键的一个点就是他并不能保障原子性

volatile与synchronized对比

java 轻量级同步volatile关键字简介与可见性有序性与synchronized区别 多线程中篇(十二)

总结

volatile是一种轻量级的同步方式(轻量级的synchronized,也就是阉割版的synchronized)
抛开性能的角度看,synchronized的正确使用可以百分百解决同步问题,但是volatile却并不能完全解决同步问题,因为他缺乏一个很重要的保障---原子性
原子性能够保障不可分割,一旦不能对原子性进行保障,一旦一个变量的修改依赖自身,比如i++,也就是i=i+1;依赖自身的值,一旦再多线程环境中,仍旧可能会出错
所以如果换一个思路理解的话,可以这样:
对于线程安全问题,主要是三个方面,原子性、可见性、有序性,不过并不一定所有的场景都需要三者完全保障;
对于synchronized关键字都进行了保障,可以用于线程安全的同步问题
对于volatile,他对可见性和有序性进行了保障,所以如果在有些场景下,如果仅仅保障了这两者就可以达到线程安全,那么volatile也可以用于线程的同步
所以说synchronized可以用于同步,volatile可以用于部分场景的线程同步
刚才提到对于i++,仅仅借助于volatile,他相当于i=i+1,依赖自身的值的内容,所以多线程会出问题,如果只有一个线程才会执行这个操作就不会出现问题
另外,如果对于一个操作,比如i=j+1;j也是一个共享变量,很显然多线程场景下,仍旧可能出现问题
所以如果你使用volatile保障线程安全,需要非常慎重,必要的时候,仍旧需要借助于synchronized关键字进行同步,进一步对原子性进行保障。