浅谈numpy.where() 的用法和np.argsort()的用法说明

时间:2022-06-12 14:47:34

numpy.where() 有两种用法:

1. np.where(condition, x, y)

满足条件(condition),输出x,不满足输出y。

如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

?
1
2
3
4
5
6
7
8
9
10
11
>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1111111111])  # 0为False,所以第一个输出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -11111])
 
>>> np.where([[True,False], [True,True]],    # 官网上的例子
    [[1,2], [3,4]],
             [[9,8], [7,6]])
array([[1, 8],
    [3, 4]])

上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:

?
1
2
3
4
5
6
7
>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
             [["chosen","not chosen"], ["chosen","not chosen"]],
             [["not chosen","chosen"], ["not chosen","chosen"]])
 
array([['chosen', 'chosen'],
       ['chosen', 'chosen']], dtype='<U10')

2. np.where(condition)

只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

?
1
2
3
4
5
6
7
8
>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)    # 返回索引
(array([2, 3, 4]),)  
>>> a[np.where(a > 5)]     # 等价于 a[a>5]
array([ 68, 10])
 
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

上面这个例子条件中[[0,1],[1,0]]的真值为两个1,各自的第一维坐标为[0,1],第二维坐标为[1,0] 。

下面看个复杂点的例子:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 012],
        [ 345],
        [ 678]],
 
       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
 
>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))
 
 
# 符合条件的元素为
    [ 678]],
 
      [[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]],
 
      [[18, 19, 20],
       [21, 22, 23],
       [24, 25, 26]]]

所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。

需要注意的一点是,输入的不能直接是list,需要转为array或者为array才行。比如range(10)和np.arange(10)后者返回的是数组,使用np.where才能达到效果。

np.argsort()的用法

?
1
numpy.argsort(a, axis=-1, kind='quicksort', order=None)

argsort(a)#获取a从小到大排列的数组

argsort(-a)#获取a从大到小排列的数组

argmin(a)#获取a最小值下标

argmax(a)#获取a最大值下标

功能: 将矩阵a按照axis排序,并返回排序后的下标

参数: a:输入矩阵, axis:需要排序的维度

返回值: 输出排序后的下标

(一维数组)

?
1
2
3
4
import numpy as np
x = np.array([1,4,3,-1,6,9])
x.argsort()
# array([3, 0, 1, 2, 4, 5], dtype=int64)

可以发现,argsort()是将X中的元素从小到大排序后,提取对应的索引index,然后输出到y

如x[3]=-1最小,x[5]=9最大

所以取数组x的最小值可以写成:

?
1
x[x.argsort()[0]]

或者用argmin()函数

?
1
x[x.argmin()]

数组x的最大值,写成:

?
1
x[x.argsort()[-1]]  # -1代表从后往前反向的索引

或者用argmax()函数,不再详述

?
1
x[x.argmax()]

输出排序后的数组

?
1
2
3
x[x.argsort()]
# 或
x[np.argsort(x)]

(二维数组)

?
1
2
3
x = np.array([[1,5,4],[-1,6,9]])
# [[ 1  5  4]
# [-1  6  9]]

沿着行向下(每列)的元素进行排序

?
1
2
3
np.argsort(x,axis=0)
# array([[1, 0, 0],
#        [0, 1, 1]], dtype=int64)

沿着列向右(每行)的元素进行排序

?
1
2
3
np.argsort(x,axis=1)
# array([[0, 2, 1],
#        [0, 1, 2]], dtype=int64)

补充:Numpy.unravel_index()和Numpy.argsort()

由于编程和文笔都较差,写的不好请见谅...

今天下午学习LDA模型的python实现,其中用到了Numpy库,想详细了解用到的每个函数,便在网上找资料。

其中遇到了Numpy.unravel_index()和Numpy.argsort(),看了好半天才弄懂orz心血来潮记录一下

首先,附上英文官方文档。https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.argsort.html和https://docs.scipy.org/doc/numpy/reference/generated/numpy.unravel_index.html

讲讲我对Numpy.argsort()的理解:

?
1
numpy.argsort(a, axis=-1, kind='quicksort', order=None)

参数说明:a要排序的数组,

axis整型或者None,如果是None,数组将变成扁平数组(即变成一行数组)

kind排序算法,快排,归并排序,堆排序...

order自定义字段顺序

返回: index_array :n维下标数组

实例:一维数组

浅谈numpy.where() 的用法和np.argsort()的用法说明

二维数组

浅谈numpy.where() 的用法和np.argsort()的用法说明

然后讲讲我对numpy.unravel_index的理解~

?
1
numpy.unravel_index(indices, dims, order='C')

参数说明:indices数组

dims数组的维度大小

order:{C,F}(C行为主,F列为主)

返回: unraveled_coords为n维数组的元组

实例: 这个地方想了好久才明白T T

浅谈numpy.where() 的用法和np.argsort()的用法说明

简单解释一下,22/6=3......4

总算写完了!

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://www.cnblogs.com/henuliulei/p/13296068.html