数学图形之Breather surface

时间:2021-12-01 14:02:20

这是一种挺漂亮的曲面图形,可惜没有找到太多的相关解释.

In differential equations, a breather surface is a mathematical surface relating to breathers.

其数学公式很复杂,参数方程为:

数学图形之Breather surface

where 0 < a < 1.

维基的相关网址为:http://en.wikipedia.org/wiki/Breather_surface

使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815

#http://xahlee.info/surface/breather_p/breather_p.html

vertices = D1: D2:

u = from -13.2 to 13.2 D1
v = from -37.4 to 37.4 D2 b = 0.4
r = - b*b
w = sqrt(r) d = b*((w*cosh[b*u])^ + (b*sin[w*v])^) y = -u + (*r*cosh[b*u]*sinh[b*u])/d
z = (*w*cosh[b*u]*(-(w*cos[v]*cos[w*v]) - sin[v]*sin[w*v]))/d
x = (*w*cosh[b*u]*(-(w*sin[v]*cos[w*v]) + cos[v]*sin[w*v]))/d

数学图形之Breather surface

使用随机数

#http://en.wikipedia.org/wiki/Breather_surface

vertices = D1: D2:

u = from -13.2 to 13.2 D1
v = from -37.4 to 37.4 D2 a = rand2(0.1, 0.9)
w = sqrt( - a*a) d = a*((w*cosh[a*u])^ + (a*sin[w*v])^) y = -u + (*( - a*a)*cosh[a*u]*sinh[a*u])/d
z = (*w*cosh[a*u]*(-(w*cos[v]*cos[w*v]) - sin[v]*sin[w*v]))/d
x = (*w*cosh[a*u]*(-(w*sin[v]*cos[w*v]) + cos[v]*sin[w*v]))/d

数学图形之Breather surface