http://www.lydsy.com/JudgeOnline/problem.php?id=2005
首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己。。。
那么就是求:
$$\sum_{x=1}^{n} \sum_{y=1}^{m} 2 \times ((x,y)-1) + 1$$
提出式子可得
$$-n \times m + 2\sum_{x=1}^{n} \sum_{y=1}^{m} (x,y)$$
然后右边那个是裸的分块+欧拉函数了。。不会的请看我原来的博文。。。
然后注意开longlong
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const int N=100005;
int p[N], cnt, np[N], phi[N];
ll sum[N];
void init(int n) {
phi[1]=1;
for1(i, 2, n) {
if(!np[i]) p[++cnt]=i, phi[i]=i-1;
for1(j, 1, cnt) {
int t=p[j]*i; if(t>n) break;
np[t]=1;
if(i%p[j]==0) { phi[t]=phi[i]*p[j]; break; }
phi[t]=phi[i]*phi[p[j]];
}
}
for1(i, 1, n) sum[i]=sum[i-1]+phi[i];
}
int main() {
int n=getint(), m=getint();
if(n>m) swap(n, m);
init(n);
int pos;
ll ans=0;
for(int i=1; i<=n; i=pos+1) {
pos=min(n/(n/i), m/(m/i));
ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i);
}
printf("%lld\n", (ans<<1)-(ll)n*m);
return 0;
}
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
5 4
【样例输入2】
3 4
Sample Output
36
【样例输出2】
20
【数据规模和约定】
对于10%的数据:1 ≤ n, m ≤ 10;
对于50%的数据:1 ≤ n, m ≤ 100;
对于80%的数据:1 ≤ n, m ≤ 1000;
对于90%的数据:1 ≤ n, m ≤ 10,000;
对于100%的数据:1 ≤ n, m ≤ 100,000。
HINT
Source
【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)的更多相关文章
-
【BZOJ2005】[Noi2010]能量采集 欧拉函数
[BZOJ2005][Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把 ...
-
[NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
-
bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...
-
BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
-
BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
-
BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
-
【刷题】BZOJ 2005 [Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
-
luogu P1447 [NOI2010]能量采集 欧拉反演
题面 题目要我们求的东西可以化为: \[\sum_{i=1}^{n}\sum_{j=1}^{m}2*gcd(i,j)-1\] \[-nm+2\sum_{i=1}^{n}\sum_{j=1}^{m}gc ...
-
BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意: 思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...
-
BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]
题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...
随机推荐
-
U-boot的目录结构及spl功能
转 http://tieba.baidu.com/p/2836672721 对uboot-2010.06及其以后的版本,将体系结构相关的内容合并,增加include文件夹,分离出通用库文件lib,其各 ...
-
COGS 2421.[HZOI 2016]简单的Treap 题解
题目大意: 给定n个数及其优先级,求对应的符合最小堆性质的Treap的先序遍历. n<=500000. 解法: 目前为止我只想到了三种解法,其中第三种是正解. 1.暴力1 以优先级为关键字排序, ...
-
Update From 用法
今天遇到用一个表的字段填充另一个表的问题,整理了一下 1.在mysql中,应该使用inner join,即: UPDATE a INNER JOIN b ON a.userName = b.u ...
-
Qt XML读取写入操作
XML(eXtensible Markup Language,可扩展标记语言)是普通用于数据交换和数据存储的一种多用途文本文件格式: SVG(可标量矢量图形)XML格式,QtSvg模块提供了可用于载入 ...
-
(简单) POJ 3368 Frequent values,RMQ。
Description You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In ad ...
-
FFmpeg入门,简单播放器
一个偶然的机缘,好像要做直播相关的项目 为了筹备,前期做一些只是储备,于是开始学习ffmpeg 这是学习的第一课 做一个简单的播放器,播放视频画面帧 思路是,将视频文件解码,得到帧,然后使用定时器,1 ...
-
微软.NET年芳15:我在Azure上搭建Photon服务器(C#.NET)
网上火热的“微软.NET年芳15”文章,我也得写点什么嘛,毕竟我还是现任的微软MVP. 摘录网上的“.NET 15周年”信息如下: 微软的 .NET 框架本周迎来了 15 岁生日..NET 的第一个版 ...
-
matlab练习程序(局部加权线性回归)
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局 ...
-
[P2996][USACO10NOV]拜访奶牛Visiting Cows (树形DP)
之前写在洛谷,结果没保存,作废…… 听说考前写题解RP++哦 思路 很容易想到是 树形DP 如果树形DP不知道是什么的话推荐百度一下 我在这里用vector储存边 设状态f[i][0]为i点不访问,f ...
-
c++ 中关于一些变量不能声明的问题
j0,j1,jn,y0,y1,yn被c++中某些函数占用了,所以是不能被声明的,今天就遇到了这个问题,结果我在自己写的程序中找了半天都没找到重复申明的y1