刚看了《最强大脑》中英对决,其中难度最大的项目需要选手先脑补泰森多边形,再找出完全相同的两个泰森多边形。在惊呆且感叹自身头脑愚笨的同时,不免手痒想要借助电脑弄个图出来看看,闲来无事吹吹牛也是极好的。
今天先来画画外接圆和内切圆,留个大坑后面来填。
外接圆圆心:三角形垂直平分线的交点。
内切圆圆心:三角形角平分线的交点。
有了思路,就可以用万能的python来计算了
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
import matplotlib.pyplot as plt
from scipy.linalg import solve
import numpy as np
from matplotlib.patches import Circle
'''
求三角形外接圆和内切圆
'''
# 画个三角形
def plot_triangle(A, B, C):
x = [A[ 0 ], B[ 0 ], C[ 0 ], A[ 0 ]]
y = [A[ 1 ], B[ 1 ], C[ 1 ], A[ 1 ]]
ax = plt.gca()
ax.plot(x, y, linewidth = 2 )
# 画个圆
def draw_circle(x, y, r):
ax = plt.gca()
cir = Circle(xy = (x, y), radius = r, alpha = 0.5 )
ax.add_patch(cir)
ax.plot()
# 外接圆
def get_outer_circle(A, B, C):
xa, ya = A[ 0 ], A[ 1 ]
xb, yb = B[ 0 ], B[ 1 ]
xc, yc = C[ 0 ], C[ 1 ]
# 两条边的中点
x1, y1 = (xa + xb) / 2.0 , (ya + yb) / 2.0
x2, y2 = (xb + xc) / 2.0 , (yb + yc) / 2.0
# 两条线的斜率
ka = (yb - ya) / (xb - xa) if xb ! = xa else None
kb = (yc - yb) / (xc - xb) if xc ! = xb else None
alpha = np.arctan(ka) if ka ! = None else np.pi / 2
beta = np.arctan(kb) if kb ! = None else np.pi / 2
# 两条垂直平分线的斜率
k1 = np.tan(alpha + np.pi / 2 )
k2 = np.tan(beta + np.pi / 2 )
# 圆心
y, x = solve([[ 1.0 , - k1], [ 1.0 , - k2]], [y1 - k1 * x1, y2 - k2 * x2])
# 半径
r1 = np.sqrt((x - xa) * * 2 + (y - ya) * * 2 )
return (x, y, r1)
# 内切圆
def get_inner_circle(A, B, C):
xa, ya = A[ 0 ], A[ 1 ]
xb, yb = B[ 0 ], B[ 1 ]
xc, yc = C[ 0 ], C[ 1 ]
ka = (yb - ya) / (xb - xa) if xb ! = xa else None
kb = (yc - yb) / (xc - xb) if xc ! = xb else None
alpha = np.arctan(ka) if ka ! = None else np.pi / 2
beta = np.arctan(kb) if kb ! = None else np.pi / 2
a = np.sqrt((xb - xc) * * 2 + (yb - yc) * * 2 )
b = np.sqrt((xa - xc) * * 2 + (ya - yc) * * 2 )
c = np.sqrt((xa - xb) * * 2 + (ya - yb) * * 2 )
ang_a = np.arccos((b * * 2 + c * * 2 - a * * 2 ) / ( 2 * b * c))
ang_b = np.arccos((a * * 2 + c * * 2 - b * * 2 ) / ( 2 * a * c))
# 两条角平分线的斜率
k1 = np.tan(alpha + ang_a / 2 )
k2 = np.tan(beta + ang_b / 2 )
kv = np.tan(alpha + np.pi / 2 )
# 求圆心
y, x = solve([[ 1.0 , - k1], [ 1.0 , - k2]], [ya - k1 * xa, yb - k2 * xb])
ym, xm = solve([[ 1.0 , - ka], [ 1.0 , - kv]], [ya - ka * xa, y - kv * x])
r1 = np.sqrt((x - xm) * * 2 + (y - ym) * * 2 )
return (x, y, r1)
if __name__ = = '__main__' :
A = ( 1. , 1. )
B = ( 5. , 2. )
C = ( 5. , 5. )
plt.axis( 'equal' )
plt.axis( 'off' )
plot_triangle(A, B, C)
x, y, r1 = get_outer_circle(A, B, C)
plt.plot(x, y, 'ro' )
draw_circle(x, y, r1)
x_inner, y_inner, r_inner = get_inner_circle(A, B, C)
plt.plot(x_inner, y_inner, 'ro' )
draw_circle(x_inner, y_inner, r_inner)
plt.show()
|
下面看看两个三角形的结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/Marshall001/article/details/50881063