\(Description\)
求$$\sum_{i=1}n\sum_{j=1}md(ij)$$
\(Solution\)
有结论:$$d(nm)=\sum_{i|d}\sum_{j|d}[\gcd(i,j)=1]$$
证明可以对质因子单独考虑吧,不想写了,背过就好了。见这:https://blog.csdn.net/PoPoQQQ/article/details/45078079。
\]
转为枚举\(a,b\),$$\sum_{i=1}n\sum_{j=1}md(ij)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[\gcd(i,j)=1]$$
然后反演,设$$F(d)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\left[d\mid(i,j)\right]=\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{jd}\rfloor\f(n)=\sum_{i=1}n\sum_{j=1}m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\left[(i,j)=n\right]$$
则$$\begin{aligned}f(1)&=\sum_{d=1}{\min(n,m)}\mu(d)F(d)\&=\sum_{d=1}{\min(n,m)}\mu(d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\lfloor\frac{n}{id}\rfloor\sum_{j=1}^{\lfloor\frac md\rfloor}\lfloor\frac{m}{jd}\rfloor\end{aligned}$$
令\(g(n)=\sum_{i=1}\lfloor\frac ni\rfloor\),则\(g(n)\)可以同样用数论分块\(O(n\sqrt n)\)的时间预处理。(也可以线性筛出来,不过很麻烦。)
那么\(f(1)=\sum_{d=1}^{\min(n,m)}\mu(d)g(\lfloor\frac nd\rfloor)g(\lfloor\frac md\rfloor)\)可以\(O(\sqrt n)\)计算。
终于填了这个近半年前留下的坑了...
//1772kb 6448ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=5e4;
int cnt,P[N>>3],mu[N+3];
long long g[N+3];
bool not_P[N+3];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init()
{
mu[1]=1;
for(int i=2; i<=N; ++i)
{
if(!not_P[i]) P[++cnt]=i, mu[i]=-1;
for(int j=1,v; j<=cnt&&(v=i*P[j])<=N; ++j)
{
not_P[v]=1;
if(i%P[j]) mu[v]=-mu[i];
else break;//mu[v]=0;
}
}
for(int i=1; i<=N; ++i) mu[i]+=mu[i-1];
for(int i=1; i<=N; ++i)
{
long long ans=0;
for(int j=1,nxt; j<=i; j=nxt+1)
{
nxt=i/(i/j);
ans+=1ll*(nxt-j+1)*(i/j);
}
g[i]=ans;
}
}
int main()
{
Init();
for(int T=read(),n,m; T--; )
{
n=read(),m=read();
long long ans=0;
for(int i=1,nxt,lim=std::min(n,m); i<=lim; i=nxt+1)
{
nxt=std::min(n/(n/i),m/(m/i));
ans+=1ll*(mu[nxt]-mu[i-1])*g[n/i]*g[m/i];
}
printf("%lld\n",ans);
}
return 0;
}