数论 : 模运算法则(poj 1152)

时间:2023-02-12 19:39:08

题目:An Easy Problem!

题意:求给出数的最小进制。

思路:暴力WA;

discuss中的idea:

给出数ABCD,若存在n 满足   (A* n^3 +B*n^2+C*n^1+D*n^0)%(n-1) == 0

则((A* n^3)%(n-1) +(B*n^2)%(n-1)+(C*n^1)%(n-1)+D%(n-1))%(n-1) == 0

                                    (A+B+C+D)%(n-1) == 0

NB!

是时候深入的看下数论了;

模运算法则:

模运算与基本四则运算有些相似,但是除法例外。其规则如下:
(a + b) % p = (a % p + b % p) % p    (1)
(a - b) % p = (a % p - b % p) % p    (2)
(a * b) % p = (a % p * b % p) % p     (3)
(a^b) % p = ((a % p)^b) % p       (4)
推论:
若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);                               (10)
若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);                                (11)
若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),
(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p);                                              (12)

费马定理:

    若p是素数,a是正整数且不能被p整除,则:a^(p-1) mod p = 1 mod p

推论:

    若p是素数,a是正整数且不能被p整除,则:a^p mod p = a mod p
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <set> #define c_false ios_base::sync_with_stdio(false); cin.tie(0)
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define zero_(x,y) memset(x , y , sizeof(x))
#define zero(x) memset(x , 0 , sizeof(x))
#define MAX(x) memset(x , 0x3f ,sizeof(x))
#define swa(x,y) {LL s;s=x;x=y;y=s;}
using namespace std ;
#define N 50005
const double PI = acos(-1.0);
typedef long long LL ; int cal(char x){
if(x >= '' && x <= '')
return x - '';
else if(x >= 'A' && x <= 'Z')
return x - 'A' +;
else if(x >= 'a' && x <= 'z')
return x - 'a' +;
return ;
}
string s;
int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(cin>>s){
int n = s.size();
int maxn = ,sum = ;
for(int i = ;i < n;i++){
sum +=cal(s[i]);
maxn = max(maxn, cal(s[i]));
}
int flag = ;
for(int i = maxn+; i <= ; i++)
if(sum%(i-) == ){
printf("%d\n",i);
flag = ;
break;
}
if(flag)
printf("such number is impossible!\n");
}
return ;
}