1、迭代器
迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,知道所有的元素被访问完结束。迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退。
1.1 使用迭代器的优点
对于原生支持随机访问的数据结构(如tuple、list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值)。但对于无法随机访问的数据结构(比如set)而言,迭代器是唯一的访问元素的方式。
另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件,或是斐波那契数列等等。
迭代器更大的功劳是提供了一个统一的访问集合的接口,只要定义了__iter__()方法对象,就可以使用迭代器访问。
迭代器有两个基本的方法
- next方法:返回迭代器的下一个元素
- __iter__方法:返回迭代器对象本身
下面用生成斐波那契数列为例子,说明为何用迭代器
def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
直接在函数fab(max)中用print打印会导致函数的可复用性变差,因为fab返回None。其他函数无法获得fab函数返回的数列。
def fab(max):
L = []
n, a, b = 0, 0, 1
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L
满足了可复用性的需求,但是占用了内存空间,最好不要。
使用迭代器一个显而易见的好处就是:每次只从对象中读取一条数据,不会造成内存的过大开销。
对比
for i in range(100): pass
for i in xrange(100): pass
前一个返回1000个元素的列表,后面这个在每次迭代中返回一个元素,因此可以使用迭代器来解决复用可占空间的问题
class Fab(object):
def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1
def __iter__(self):
return self
def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()
执行
Fab类通过 next() 不断返回数列的下一个数,内存占用始终为常数
1.2 使用迭代器
使用内建的函数iter(iterable)可以获取迭代器对象:
使用next()方法可以访问下一个元素:
python处理迭代器越界是抛出StopIteration异常
了解了StopIteration,可以使用迭代器进行遍历了
lst = range(5)
it = iter(lst)
try:
while True:
val = it.next()
print val
except StopIteration:
pass
结果
事实上,因为迭代器如此普遍,python专门为for关键字做了迭代器的语法糖。在for循环中,Python将自动调用工厂函数iter()获得迭代器,自动调用next()获取元素,还完成了检查StopIteration异常的工作。如下
>>> a = (1, 2, 3, 4)
>>> for key in a:
print key
首先python对关键字in后的对象调用iter函数迭代器,然后调用迭代器的next方法获得元素,直到抛出StopIteration异常。
1.3 定义迭代器
下面一个例子——斐波那契数列
# -*- coding: utf-8 -*-
class Fabs(object):
def __init__(self,max):
self.max = max
self.n, self.a, self.b = 0, 0, 1 #特别指出:第0项是0,第1项是第一个1.整个数列从1开始
def __iter__(self):
return self
def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()
print Fabs(5)
for key in Fabs(5):
print key
结果
2、生成器
yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行。也就是说,yield返回函数,交给调用者一个返回值,然后再“瞬移”回去,让函数继续运行, 直到吓一跳yield语句再返回一个新的值
(用于做数据库的链接池)
几个例子说明下(还是用生成斐波那契数列说明)
可以看出生成器(yield)的简洁性效果
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n = 1
执行
简单地讲,yield 的作用就是把一个函数变成一个generator,带有yield 的函数不再是一个普通函数,Python 解释器会将其视为一个generator,调用fab(5) 不会执行fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
return作用
在一个生成器中,如果没有return,则默认执行到函数完毕;如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。例如
文件读取
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取。
3、装饰器
是函数,只不过该函数可以具有特殊的含义,装饰器用来装饰函数或类。就是函数加上python的语法
第一步执行装饰器函数,第二步对被装饰的函数名重新复值
使用装饰器可以在函数执行前和执行后添加相应操作。
例1: 装饰器含多个参数
vim auth.py
# -*- coding: utf-8 -*- #装饰器就是函数加上python的语法
#第一步执行装饰器函数,第二步对被装饰的函数名重新复值
def auth(func): #当函数传入N个参数时
def inner(*arg,**kwargs):
print "login user..."
func(*arg,**kwargs)
print "logout user..."
return inner
@auth
def f1():
print "f1"
@auth
def f5(arg,warg): #传入N个参数
print "f5",arg,warg
vim f1.py
# -*- coding: utf-8 -*-
import auth
auth.f1()
print "========="
auth.f5("10.2.3.1","10.2.2.1")
例2: 装饰器含返回值的函数
vim auth.py
# -*- coding: utf-8 -*- def auth(func): #当函数传入N个参数时
def inner(*arg,**kwargs):
print "login user..."
temp = func(*arg,**kwargs)
print "logout user..."
return temp
return inner
@auth
def f6(arg):
server_list = ['c1','c2','c3']
return server_list
vim f1.py
# -*- coding: utf-8 -*-
import auth
ret_list = auth.f6('test')
print ret_list
例3:装饰器实现登陆验证
vim auth1.py
# -*- coding: utf-8 -*- def login():
name = "lenliu"
if name == "lenliu":
return True
else:
return False def auth(func):
def inner(*arg,**kwargs):
login_list = login()
if not login_list:
return "非法用户...."
temp = func(*arg,**kwargs)
return temp
return inner
@auth
def f7(arg):
server_list = ['D1','D2','D3']
return server_list
vim f1.py
# -*- coding: utf-8 -*-
import auth1
print "========="
ret_list = auth1.f7('test')
print ret_list
例4:装饰器实现token验证
vim auth2.py
# -*- coding: utf-8 -*- def login(key):
local = "1234qwerasdfzxcv5678."
if local == key:
return True
else:
return False def auth2(func):
def inner(*args,**kwargs):
key = kwargs.pop("token")
is_login = login(key)
if not is_login:
return "非法用户"
temp = func(*args,**kwargs)
return temp
return inner
@auth2
def f8(arg):
server_list = ['D1','D2','D3']
return server_list
vim f2.py
# -*- coding: utf-8 -*- import auth2 key = "1234qwerasdfzxcv5678." ret_list = auth2.f8('test',token=key)
print ret_list
例5:多层装饰器
vim auth3.py
# -*- coding: utf-8 -*-
# 一个函数可以被多个装饰器调用的,从上往下执行装饰器
# 二层装饰器就是在一个装饰器外面套一个盒子,再加一层装饰器就是再套一个盒子
# 可用于用户权限验证
def w1(func):
def inner():
print "w1 before"
func()
print "w1 after"
return inner
def w2(func):
def inner():
print "w2 before"
func()
print "w2 after"
return inner
@w1
@w2
def foo():
print "foo..."
foo()
例6:至少三层装饰器
至少3层,如何使用:
@w1
1、执行w1函数
2、将w1函数的返回值赋值给被装饰器的函数的函数名
@w2(arg)
1、执行w2函数,得到返回值,ret
2、创建装饰器,@+ret结合:@ret
3、
1、执行w1函数
2、将w1函数的返回值赋值给被装饰器的函数的函数名
# -*- coding: utf-8 -*- def Before(request,kargs):
print 'before'
def After(request,kargs):
print 'after' def Filter(before_func,after_func):
def outer(main_func):
def wrapper(request,kargs):
before_result = before_func(request,kargs)
if(before_result != None):
return before_result
main_result = main_func(request,kargs)
if(main_result != None):
return main_result
after_result = after_func(request,kargs)
if(after_result != None):
return after_result
return wrapper
return outer
@Filter(Before, After)
def Index(request,kargs):
print 'index' Index('lenliu','amy')