Python实现DBScan

时间:2021-12-11 09:09:05

Python实现DBScan

运行环境

  • Pyhton3
  • numpy(科学计算包)
  • matplotlib(画图所需,不画图可不必)

计算过程

st=>start: 开始
e=>end: 结束
op1=>operation: 读入数据
cond=>condition: 是否还有未分类数据
op2=>operation: 找一未分类点扩散
op3=>operation: 输出结果 st->op1->op2->cond
cond(yes)->op2
cond(no)->op3->e

输入样例

/* 788points.txt */
15.55,28.65
14.9,27.55
14.45,28.35
14.15,28.8
13.75,28.05
13.35,28.45
13,29.15
13.45,27.5
13.6,26.5
12.8,27.35
12.4,27.85
12.3,28.4
12.2,28.65
13.4,25.1
12.95,25.95

788points.txt完整文件:下载

代码实现

# -*- coding: utf-8 -*-
__author__ = 'Wsine' import numpy as np
import matplotlib.pyplot as plt
import math
import time UNCLASSIFIED = False
NOISE = 0 def loadDataSet(fileName, splitChar='\t'):
"""
输入:文件名
输出:数据集
描述:从文件读入数据集
"""
dataSet = []
with open(fileName) as fr:
for line in fr.readlines():
curline = line.strip().split(splitChar)
fltline = list(map(float, curline))
dataSet.append(fltline)
return dataSet def dist(a, b):
"""
输入:向量A, 向量B
输出:两个向量的欧式距离
"""
return math.sqrt(np.power(a - b, 2).sum()) def eps_neighbor(a, b, eps):
"""
输入:向量A, 向量B
输出:是否在eps范围内
"""
return dist(a, b) < eps def region_query(data, pointId, eps):
"""
输入:数据集, 查询点id, 半径大小
输出:在eps范围内的点的id
"""
nPoints = data.shape[1]
seeds = []
for i in range(nPoints):
if eps_neighbor(data[:, pointId], data[:, i], eps):
seeds.append(i)
return seeds def expand_cluster(data, clusterResult, pointId, clusterId, eps, minPts):
"""
输入:数据集, 分类结果, 待分类点id, 簇id, 半径大小, 最小点个数
输出:能否成功分类
"""
seeds = region_query(data, pointId, eps)
if len(seeds) < minPts: # 不满足minPts条件的为噪声点
clusterResult[pointId] = NOISE
return False
else:
clusterResult[pointId] = clusterId # 划分到该簇
for seedId in seeds:
clusterResult[seedId] = clusterId while len(seeds) > 0: # 持续扩张
currentPoint = seeds[0]
queryResults = region_query(data, currentPoint, eps)
if len(queryResults) >= minPts:
for i in range(len(queryResults)):
resultPoint = queryResults[i]
if clusterResult[resultPoint] == UNCLASSIFIED:
seeds.append(resultPoint)
clusterResult[resultPoint] = clusterId
elif clusterResult[resultPoint] == NOISE:
clusterResult[resultPoint] = clusterId
seeds = seeds[1:]
return True def dbscan(data, eps, minPts):
"""
输入:数据集, 半径大小, 最小点个数
输出:分类簇id
"""
clusterId = 1
nPoints = data.shape[1]
clusterResult = [UNCLASSIFIED] * nPoints
for pointId in range(nPoints):
point = data[:, pointId]
if clusterResult[pointId] == UNCLASSIFIED:
if expand_cluster(data, clusterResult, pointId, clusterId, eps, minPts):
clusterId = clusterId + 1
return clusterResult, clusterId - 1 def plotFeature(data, clusters, clusterNum):
nPoints = data.shape[1]
matClusters = np.mat(clusters).transpose()
fig = plt.figure()
scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown']
ax = fig.add_subplot(111)
for i in range(clusterNum + 1):
colorSytle = scatterColors[i % len(scatterColors)]
subCluster = data[:, np.nonzero(matClusters[:, 0].A == i)]
ax.scatter(subCluster[0, :].flatten().A[0], subCluster[1, :].flatten().A[0], c=colorSytle, s=50) def main():
dataSet = loadDataSet('788points.txt', splitChar=',')
dataSet = np.mat(dataSet).transpose()
# print(dataSet)
clusters, clusterNum = dbscan(dataSet, 2, 15)
print("cluster Numbers = ", clusterNum)
# print(clusters)
plotFeature(dataSet, clusters, clusterNum) if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
plt.show()

输出样例

cluster Numbers =  7
finish all in 32.712135628590794

Python实现DBScan

Python实现DBScan的更多相关文章

  1. Python机器学习——DBSCAN聚类

    密度聚类(Density-based Clustering)假设聚类结构能够通过样本分布的紧密程度来确定.DBSCAN是常用的密度聚类算法,它通过一组邻域参数(ϵϵ,MinPtsMinPts)来描述样 ...

  2. Python实现DBSCAN聚类算法(简单样例测试)

    发现高密度的核心样品并从中膨胀团簇. Python代码如下: # -*- coding: utf-8 -*- """ Demo of DBSCAN clustering ...

  3. 密度聚类 - DBSCAN算法

    参考资料:python机器学习库sklearn——DBSCAN密度聚类,     Python实现DBScan import numpy as np from sklearn.cluster impo ...

  4. (数据科学学习手札15)DBSCAN密度聚类法原理简介&amp&semi;Python与R的实现

    DBSCAN算法是一种很典型的密度聚类法,它与K-means等只能对凸样本集进行聚类的算法不同,它也可以处理非凸集. 关于DBSCAN算法的原理,笔者觉得下面这篇写的甚是清楚练达,推荐大家阅读: ht ...

  5. Python机器学习笔记:K-Means算法,DBSCAN算法

    K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...

  6. DBSCAN——python实现

    # -*- coding: utf-8 -*- from matplotlib.pyplot import * from collections import defaultdict import r ...

  7. 挑子学习笔记:DBSCAN算法的python实现

    转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clu ...

  8. &lbrack;MCM&rsqb; K-mean聚类与DBSCAN聚类 Python

    import matplotlib.pyplot as plt X=[56.70466067,56.70466067,56.70466067,56.70466067,56.70466067,58.03 ...

  9. 吴裕雄 python 机器学习——密度聚类DBSCAN模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

随机推荐

  1. Stimulsoft入门视频

    .NET框架下最全面的报表解决方案,支持多种报表导出格式,拥有简单且强大的报表引擎.本系列教程适合Stimulsoft Reports上手入门. 001     Stimulsoft Reports. ...

  2. SourceTree - 正在检查源&period;&period;&period; When cloning a repository&comma; &quot&semi;Checking Source&quot&semi; spins forever

    I am trying to clone a repository, my OpenSSH is set up correctly and I can do everything fine in Gi ...

  3. bzoj1056

    花了一上午大概复习了一下splay,treap 像这种裸的数据结构题在js应该会越来越少 不过练练手也好, 这就是平衡树+hash,如果这是单纯的BST应用,还是写treap吧,好调试 ;       ...

  4. PHP - 操作MySQL数据库

    第16章 PHP操作MySQL 学习要点: 1.PHP连接到MySQL 2.增删改查 3.其他常用函数 如果你已经具有了使用PHP.SQL和MySQL的丰富经验,现在就可以把所有这些技术组合在一起.P ...

  5. AJAX基础&lowbar;AJAX获取PHP数据

    前言 本篇AJAX基础教程,只讲干货,拒绝废话. 全文通过两个实例来讲解AJAX的基本用法,第1个实例是使用AJAX技术从服务器获取纯文本(HTML)数据, 第2个实例是获取从服务器PHP文件的数据. ...

  6. Android应用---基于NDK的samples例程hello-jni学习NDK开发

    Android应用---基于NDK的samples例程hello-jni学习NDK开发 NDK下载地址:http://developer.android.com/tools/sdk/ndk/index ...

  7. js 实现论坛评论模块原理

    <body>   <table id="tb" border="1">   <tbody id="tbd"&g ...

  8. JavaScrip之BOM、DOM

    BOM 浏览器对象模型(BrowserObjectModel),可以对浏览器窗口进行访问和操作.使用 BOM,开发者可以移动窗口.改变状态栏中的文本以及执行其他与页面内容不直接相关的动作. 使 Jav ...

  9. ElasticSearch无法启动

    安装了ElasticSearch5.5.1后,每次启动服务的时候,都是启动了一下就自动停止了.查看了一下EventViewer, 错误信息如下: Application: elasticsearch. ...

  10. 一键安装lnmp-nginx(3)

    nginx(){cd $pathtar zxvf pcre-8.20.tar.gz cd pcre-8.20./configure --prefix=/usr/local/pcremakemake i ...