网上找了很多材料都是写了部份代码的,今天在峰哥的帮助下实现了此功能。
为何要设置此功能是由于 hive fields terminated by '||||' 不支持 字符串导致
将你的inputformat类打成jar包,如MyInputFormat.jar
将MyInputFormat.jar放到 hive/lib里,然后就可以建表了
假设你的inputFormat类路径是com.hive.myinput
则建表语句为:create table tbname(name stirng,id int, ...) stored as INPUTFORMAT 'com.hive.myinput' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
HiveIgnoreKeyTextOutputFormat是系统自带的outputformat类,你也可以自定义
由于hive是基于hadoop集群运行的,所以hadoop/lib里面也必须放入MyInputFormat.jar,
此功能需要二个CLASS 类:ClickstreamInputFormat ClickstreamRecordReader
package com.jd.cloud.clickstore;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobConfigurable;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
/**
* 自定义hadoop的 org.apache.hadoop.mapred.InputFormat
*
* @author winston
*
*/
public class ClickstreamInputFormat extends TextInputFormat implements
JobConfigurable {
public RecordReader<LongWritable, Text> getRecordReader(
InputSplit genericSplit, JobConf job, Reporter reporter)
throws IOException {
reporter.setStatus(genericSplit.toString());
return new ClickstreamRecordReader((FileSplit) genericSplit,job);
}
}
package com.jd.cloud.clickstore;
import java.io.IOException;
import java.io.InputStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.util.LineReader;
import org.apache.hadoop.mapred.RecordReader;
public class ClickstreamRecordReader implements
RecordReader<LongWritable, Text> {
private CompressionCodecFactory compressionCodecs = null;
private long start;
private long pos;
private long end;
private LineReader lineReader;
int maxLineLength;
public ClickstreamRecordReader(FileSplit inputSplit, Configuration job)
throws IOException {
maxLineLength = job.getInt("mapred.ClickstreamRecordReader.maxlength",
Integer.MAX_VALUE);
start = inputSplit.getStart();
end = start + inputSplit.getLength();
final Path file = inputSplit.getPath();
compressionCodecs = new CompressionCodecFactory(job);
final CompressionCodec codec = compressionCodecs.getCodec(file);
// Open file and seek to the start of the split
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(file);
boolean skipFirstLine = false;
if (codec != null) {
lineReader = new LineReader(codec.createInputStream(fileIn), job);
end = Long.MAX_VALUE;
} else {
if (start != 0) {
skipFirstLine = true;
--start;
fileIn.seek(start);
}
lineReader = new LineReader(fileIn, job);
}
if (skipFirstLine) {
start += lineReader.readLine(new Text(), 0,
(int) Math.min((long) Integer.MAX_VALUE, end - start));
}
this.pos = start;
}
public ClickstreamRecordReader(InputStream in, long offset, long endOffset,
int maxLineLength) {
this.maxLineLength = maxLineLength;
this.lineReader = new LineReader(in);
this.start = offset;
this.pos = offset;
this.end = endOffset;
}
public ClickstreamRecordReader(InputStream in, long offset, long endOffset,
Configuration job) throws IOException {
this.maxLineLength = job.getInt(
"mapred.ClickstreamRecordReader.maxlength", Integer.MAX_VALUE);
this.lineReader = new LineReader(in, job);
this.start = offset;
this.pos = offset;
this.end = endOffset;
}
public LongWritable createKey() {
return new LongWritable();
}
public Text createValue() {
return new Text();
}
/**
* Reads the next record in the split. get usefull fields from the raw nginx
* log.
*
* @param key
* key of the record which will map to the byte offset of the
* record's line
* @param value
* the record in text format
* @return true if a record existed, false otherwise
* @throws IOException
*/
public synchronized boolean next(LongWritable key, Text value)
throws IOException {
// Stay within the split
while (pos < end) {
key.set(pos);
int newSize = lineReader.readLine(value, maxLineLength,
Math.max((int) Math.min(Integer.MAX_VALUE, end - pos),
maxLineLength));
if (newSize == 0)
return false;
String str = value.toString().toLowerCase()
.replaceAll("\\@\\_\\@", "\001");
value.set(str);
pos += newSize;
if (newSize < maxLineLength)
return true;
}
return false;
}
public float getProgress() {
if (start == end) {
return 0.0f;
} else {
return Math.min(1.0f, (pos - start) / (float) (end - start));
}
}
public synchronized long getPos() throws IOException {
return pos;
}
public synchronized void close() throws IOException {
if (lineReader != null)
lineReader.close();
}
// 测试 输出
//public static void main(String ags[]){
// String str1 ="123@_@abcd@_@fk".replaceAll("\\@\\_\\@", "\001");
// System.out.println(str1);
//}
}
1.上传到 HIVE 服务器上 JAVAC 编译
javac -cp ./:/usr/lib/hadoop/hadoop-common.jar:/home/op1/hadoop/hadoop-core-1.0.3.jar:/usr/lib/hadoop/lib/commons-logging-1.1.1.jar */**/*/*/*
2.JAR 打包 类文件
jar -cf ClickstreamInputFormat.jar /home/op1/uerdwdb/src/
3.复制 Hive/lib Hadoop/lib 文件夹内
4.Hive 创建表命令
create table hive_text(num int,name string,`add` string)
stored as INPUTFORMAT 'com.jd.cloud.clickstore.ClickstreamInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
location '/home/op1/uerdwdb/text.txt';