E. Forensic Examination
The country of Reberland is the archenemy of Berland. Recently the authorities of Berland arrested a Reberlandian spy who tried to bring the leaflets intended for agitational propaganda to Berland illegally . The most leaflets contain substrings of the Absolutely Inadmissible Swearword and maybe even the whole word.
Berland legal system uses the difficult algorithm in order to determine the guilt of the spy. The main part of this algorithm is the following procedure.
All the m leaflets that are brought by the spy are numbered from 1 to m. After that it's needed to get the answer to q queries of the following kind: "In which leaflet in the segment of numbers [l, r] the substring of the Absolutely Inadmissible Swearword [pl, pr] occurs more often?".
The expert wants you to automate that procedure because this time texts of leaflets are too long. Help him!
The first line contains the string s (1 ≤ |s| ≤ 5·105) — the Absolutely Inadmissible Swearword. The string s consists of only lowercase English letters.
The second line contains the only integer m (1 ≤ m ≤ 5·104) — the number of texts of leaflets for expertise.
Each of the next m lines contains the only string ti — the text of the i-th leaflet. The sum of lengths of all leaflet texts doesn't exceed 5·104. The text of the leaflets consists of only lowercase English letters.
The next line contains integer q (1 ≤ q ≤ 5·105) — the number of queries for expertise.
Finally, each of the last q lines contains four integers l, r, pl, pr (1 ≤ l ≤ r ≤ m, 1 ≤ pl ≤ pr ≤ |s|), where |s| is the length of the Absolutely Inadmissible Swearword.
Print q lines. The i-th of them should contain two integers — the number of the text with the most occurences and the number of occurences of the substring [pl, pr] of the string s. If there are several text numbers print the smallest one.
suffixtree
3
suffixtreesareawesome
cartesiantreeisworsethansegmenttree
nyeeheeheee
2
1 2 1 10
1 3 9 10
1 1
3 4
Solution
题目大意:给出一个模板串S和M个特殊串,每次询问S的[l,r]这个子串出现在编号为[pl,pr]的特殊串中最多出现次数以及其编号。
显然可以把所有串连起来建后缀自动机。
对于每个特殊串的节点,可以认为它包含一种颜色,然后查询操作实际上就是查询一个子树颜色数。
这个可以从叶子节点利用线段树合并得到;
总的复杂度是$O(NlogN)$
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} #define MAXN 500010
#define MAXS 1230010 int N,M,Q,pos[MAXN]; char S[MAXN],s[MAXN]; int root=1,sz=1,last=1,par[MAXS],son[MAXS][27],len[MAXS],st[MAXS],id[MAXS];
inline void Extend(int c)
{
int cur=++sz,p=last;
len[cur]=len[p]+1;
while (p && !son[p][c]) son[p][c]=cur,p=par[p];
if (!p) par[cur]=root;
else {
int q=son[p][c];
if (len[p]+1==len[q]) par[cur]=q;
else {
int nq=++sz;
memcpy(son[nq],son[q],sizeof(son[nq]));
len[nq]=len[p]+1; par[nq]=par[q];
while (p && son[p][c]==q) son[p][c]=nq,p=par[p];
par[q]=par[cur]=nq;
}
}
last=cur;
} inline void Sort()
{
for (int i=0; i<=sz; i++) st[i]=0;
for (int i=1; i<=sz; i++) st[len[i]]++;
for (int i=0; i<=sz; i++) st[i]+=st[i-1];
for (int i=1; i<=sz; i++) id[st[len[i]]--]=i;
} #define Pa pair<int,int>
#define MP make_pair
#define Max first
#define Id second struct SgtNode{
Pa key;
int lson,rson;
}tree[MAXS*23]; inline Pa operator * (const Pa & A,const Pa &B) {return A.Max==B.Max? (A.Id<B.Id? A:B):(A.Max>B.Max? A:B);} inline Pa operator + (const Pa & A,const Pa &B) {return MP(A.Max+B.Max,A.Id);} int cnt,roots[MAXS],father[21][MAXS];
inline void Insert(int &x,int val,int l,int r)
{
if(!x) x=++cnt;
if (l==r) {tree[x].key.Max++,tree[x].key.Id=l; return;}
int mid=(l+r)>>1;
if (val<=mid) Insert(tree[x].lson,val,l,mid);
else Insert(tree[x].rson,val,mid+1,r);
tree[x].key=tree[tree[x].lson].key * tree[tree[x].rson].key;
} inline int Merge(int x,int y,int l,int r)
{
if (!x || !y) return x|y;
int z=++cnt;
if (l==r) {
tree[z].key=tree[x].key+tree[y].key;
return z;
}
int mid=(l+r)>>1;
tree[z].lson=Merge(tree[x].lson,tree[y].lson,l,mid);
tree[z].rson=Merge(tree[x].rson,tree[y].rson,mid+1,r);
tree[z].key=tree[tree[z].lson].key * tree[tree[z].rson].key;
return z;
} inline Pa Query(int x,int l,int r,int L,int R)
{
if (!x) return MP(0,0);
if (L<=l && R>=r) return tree[x].key;
int mid=(l+r)>>1;
if (R<=mid) return Query(tree[x].lson,l,mid,L,R);
else if (L>mid) return Query(tree[x].rson,mid+1,r,L,R);
else return Query(tree[x].lson,l,mid,L,mid) * Query(tree[x].rson,mid+1,r,mid+1,R);
} inline int Get(int l,int r)
{
int Len=r-l+1,x=pos[r];
for (int i=20; i>=0; i--)
if (len[father[i][x]]>=Len)
x=father[i][x];
return x;
} int main()
{
scanf("%s",S+1); N=strlen(S+1);
for (int i=1; i<=N; i++) Extend(S[i]-'a'),pos[i]=last;
Extend(26);
M=read();
for (int j=1; j<=M; j++) {
scanf("%s",s+1); int le=strlen(s+1);
for (int i=1; i<=le; i++) {
Extend(s[i]-'a'),Insert(roots[last],j,1,M);
}
Extend(26);
} Sort(); for (int i=sz; i>=1; i--) {
int x=id[i];
if (par[x]) roots[par[x]]=Merge(roots[par[x]],roots[x],1,M);
} for (int i=1; i<=sz; i++) father[0][i]=par[i]; for (int j=1; j<=20; j++)
for (int i=1; i<=sz; i++)
father[j][i]=father[j-1][father[j-1][i]]; Q=read();
while (Q--) {
int l=read(),r=read(),pl=read(),pr=read();
int x=Get(pl,pr);
Pa ans=Query(roots[x],1,M,l,r);
if (!ans.Max) printf("%d %d\n",l,0);
else printf("%d %d\n",ans.Id,ans.Max);
} return 0;
}
【Codeforces666E】Forensic Examination 后缀自动机 + 线段树合并的更多相关文章
-
cf666E. Forensic Examination(广义后缀自动机 线段树合并)
题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...
-
BZOJ3413: 匹配(后缀自动机 线段树合并)
题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并... 首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数.(画一画就出来了) 然后直 ...
-
[Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)
https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...
-
模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)
模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...
-
【BZOJ4556】[TJOI2016&;HEOI2016] 字符串(后缀自动机+线段树合并+二分)
点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...
-
CF 666E Forensic Examination——广义后缀自动机+线段树合并
题目:http://codeforces.com/contest/666/problem/E 对模式串建广义后缀自动机,询问的时候把询问子串对应到广义后缀自动机的节点上,就处理了“区间”询问. 还要处 ...
-
CF666E Forensic Examination(后缀自动机+线段树合并)
给你一个串S以及一个字符串数组T[1..m],q次询问,每次问S的子串S[pl..pr]在T[l..r]中的哪个串里的出现次数最多,并输出出现次数. 如有多解输出最靠前的那一个. 我们首先对m个字符串 ...
-
[CF666E]Forensic Examination:后缀自动机+线段树合并
分析 用到了两个小套路: 使用线段树合并维护广义后缀自动机的\(right\)集合. 查询\(S[L,R]\)在\(T\)中的出现次数:给\(T\)建SAM,在上面跑\(S\),跑到\(R\)的时候先 ...
-
【CF666E】Forensic Examination - 广义后缀自动机+线段树合并
广义SAM专题的最后一题了……呼 题意: 给出一个长度为$n$的串$S$和$m$个串$T_{1\cdots m}$,给出$q$个询问$l,r,pl,pr$,询问$S[pl\cdots pr]$在$T_ ...
随机推荐
-
ASP.NET 5运行时升级到Beta5
在Visual Studio 2015 RTM和Windows 10正式发布之前,微软把开源.NET升级到了beta5,带来了一些增强和改变.和Visual Studio 2015 RC一起安装的AS ...
-
ARM Linux Qt 5.x.x 无标题栏
/********************************************************************************* * ARM Linux Qt 5. ...
-
【MariaDB】MariaDB编译参数
参考: http://wangfeng7399.blog.51cto.com/3518031/1393146?utm_source=tuicool http://www.phperz.com/arti ...
-
SQL SERVER中查询参数为空(null)时默认查询所有的实现
最近在项目中碰到一个比较有意思的问题,网上查找了一些方法,在这里总结分享一下. 我们经常会碰到这样的场景:需要查询数据,有一些查询条件,但是查询的时候,我们希望在某个条件为空的时候,则不筛选这个条件, ...
-
格式化URL
//格式化url查询参数为json function formatUrl(url){ var reg=/(?:[?&]+)([^&]+)=([^&]+)/g; var data ...
-
交换机access与trunk口
理论知识: 以太网端口二种链路类型:Access 和Trunk. Access 类型的端口:只能属于1 个VLAN,一般用于连接计算机的端口: Trunk 类型的端口:可以允许多个VLAN 通过,可以 ...
-
c# zip file and folder programmatically
In .net 4.5 Framework, we can zip a file by this way: private static string CompressFile(string sour ...
-
[Ext.Net]GridPanel之Access数据库分页显示
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...
-
Tomcat启动时卡在“INFO: Deploying web application directory ”
今天在linux上的tomcat部署一个网站时,在刚启动tomcat的时候提示启动成功,然后也能访问成功. 可是第二次启动时虽然没有报错,但无法访问tomcat,查看了catalina.out日志,发 ...
-
[leetcode-537-Complex Number Multiplication]
Given two strings representing two complex numbers. You need to return a string representing their m ...