从这里始将要继续进行Java数据结构的相关讲解,Are you ready?Let's go~~
Java中的数据结构模型可以分为一下几部分:
1.线性结构
2.树形结构
3.图形或者网状结构
接下来的几章,我们将会分别讲解这几种数据结构,主要也是通过Java代码的方式来讲解相应的数据结构。
今天要讲解的是:Java线性结构
对于之前普通树和二叉树的讲解请参考地址:
今天我们将要进行的是Java树中的哈夫曼树(HaffmanTree),哈夫曼编码(HaffmanTreeCode),排序二叉树
和红黑树进行相应的讲解,由于内容比较多,请耐心学习,同时有不足的地方也欢迎批评指正。谢谢~~~
1.哈夫曼树的讲解
哈夫曼树又称为最优二叉树,是一种带权路径最短的二叉树。哈夫曼树是二叉树的又一种应用,在信息检索中经常会使用到的。
下面还是简单的介绍一下哈夫曼树的基本特性,至于更详细的信息请自己百度哦。
节点之间的路径的长度:
从一个节点到另外一个节点的分支的数量,我们称之为两个节点之间的路径的长度。
树的路径长度:
从根节点到树中每个节点的路径的长度之和,我们称之树的路径的长度。
节点的带权路径的长度:
从该节点到根节点之间路径的长度与节点权值的乘积
树的带权路径的长度:
树中所有的节点的带权路径之和
带权路径最小的二叉树,我们称之为哈夫曼树或者为最优二叉树
对于具有n个叶子节点的二叉树,一共需要2*n-1个节点。
下面给出具体的代码来实现创建哈夫曼树的过程:
废话也不多说,如果感兴趣的话请仔细查看下面的代码哦。
package com.yonyou.test; import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue; /**
* 测试类
* @author 小浩
* @创建日期 2015-3-20
*/
public class Test
{
public static void main(String[] args)
{
List<HuffmanTree.Node<String>> nodes = new ArrayList<HuffmanTree.Node<String>>();
nodes.add(new HuffmanTree.Node<String>("A" , 40.0));
nodes.add(new HuffmanTree.Node<String>("B" , 7.0));
nodes.add(new HuffmanTree.Node<String>("C" , 10.0));
nodes.add(new HuffmanTree.Node<String>("D" , 30.0));
nodes.add(new HuffmanTree.Node<String>("E" , 12.0));
nodes.add(new HuffmanTree.Node<String>("F" , 2.0));
HuffmanTree.Node<String> root = HuffmanTree.createTree(nodes);
System.out.println(HuffmanTree.breadthFirst(root));
}
} /**
* 创建哈夫曼树的过程
* @author 小浩
* @创建日期 2015-3-23
* @param <E>
*/
class HuffmanTree
{
public static class Node<E>
{
//节点中存储的数据
E data;
//当前节点所对应的权值
double weight;
//当前节点的左节点
Node<E> leftChild;
//当前节点的右节点
Node<E> rightChild;
public Node(E data , double weight)
{
this.data = data;
this.weight = weight;
}
public String toString()
{
return "Node[data=" + data
+ ", weight=" + weight + "]";
}
} /**
* 构造哈夫曼树
* @param nodes 节点集合
* @return 构造出来的哈夫曼树的根节点
*/
public static <E> Node<E> createTree(List<Node<E>> nodes)
{
// 只要nodes数组中还有2个以上的节点
while (nodes.size() > 1)
{
//快速排序,对当前节点进行快排操作...
quickSort(nodes);
// 获取权值最小的两个节点
Node<E> left = nodes.get(nodes.size() - 1);
Node<E> right = nodes.get(nodes.size() - 2);
// 生成新节点,新节点的权值为两个子节点的权值之和
Node<E> parent = new Node<E>(null , left.weight + right.weight);
// 让新节点作为权值最小的两个节点的父节点
parent.leftChild = left;
parent.rightChild = right;
// 删除权值最小的两个节点
nodes.remove(nodes.size() - 1);
nodes.remove(nodes.size() - 1);
// 将新生成的父节点添加到集合中
nodes.add(parent);
}
// 返回nodes集合中唯一的节点,也就是根节点
return nodes.get(0);
} /**
* 将指定数组的i和j索引处的元素交换
* @param nodes
* @param i
* @param j
*/
private static <E> void swap(List<Node<E>> nodes, int i, int j)
{
Node<E> tmp;
tmp = nodes.get(i);
nodes.set(i , nodes.get(j));
nodes.set(j , tmp);
} /**
* 实现快速排序算法,用于对节点进行排序
* @param nodes
* @param start
* @param end
*/
private static <E> void subSort(List<Node<E>> nodes
, int start , int end)
{
// 需要排序
if (start < end)
{
// 以第一个元素作为分界值
Node base = nodes.get(start);
// i从左边搜索,搜索大于分界值的元素的索引
int i = start;
// j从右边开始搜索,搜索小于分界值的元素的索引
int j = end + 1;
while(true)
{
// 找到大于分界值的元素的索引,或i已经到了end处
while(i < end && nodes.get(++i).weight >= base.weight);
// 找到小于分界值的元素的索引,或j已经到了start处
while(j > start && nodes.get(--j).weight <= base.weight);
if (i < j)
{
swap(nodes , i , j);
}
else
{
break;
}
}
swap(nodes , start , j);
// 递归左子序列
subSort(nodes , start , j - 1);
// 递归右边子序列
subSort(nodes , j + 1, end);
}
} /**
* 快速排序
* @param nodes
*/
public static <E> void quickSort(List<Node<E>> nodes)
{
subSort(nodes , 0 , nodes.size() - 1);
} /**
* 广度优先遍历
* @param root
* @return
*/
public static List<Node> breadthFirst(Node root)
{
Queue<Node> queue = new ArrayDeque<Node>();
List<Node> list = new ArrayList<Node>();
if( root != null)
{
// 将根元素入“队列”
queue.offer(root);
}
while(!queue.isEmpty())
{
// 将该队列的“队尾”的元素添加到List中
list.add(queue.peek());
Node p = queue.poll();
// 如果左子节点不为null,将它加入“队列”
if(p.leftChild != null)
{
queue.offer(p.leftChild);
}
// 如果右子节点不为null,将它加入“队列”
if(p.rightChild != null)
{
queue.offer(p.rightChild);
}
}
return list;
}
}
2.排序二叉树的讲解
所谓排序二叉树:指的是给定一棵树,要么这棵树是一棵空树,要么这棵树具有以下特点:
1)、如果它的左子树不空,那么它的左子树上面的所有节点都小于根节点
2)、如果它的右子树不空,那么它的右子树上面的所有节点都大于根节点
3)、它的左、右子树也分别是一棵排序二叉树
具体的请看代码:
package com.yonyou.test; import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue; /**
* 测试类
* @author 小浩
* @创建日期 2015-3-20
*/
public class Test
{
public static void main(String[] args)
{
}
} /**
* 创建排序二叉树的过程
* @author 小浩
* @创建日期 2015-3-23
* @param <E>
*/
class SortedBinTree<T extends Comparable>
{
/**
* 用于存储的节点的相关信息
* @author 小浩
* @创建日期 2015-3-23
*/
static class Node
{
Object data;
Node parent;
Node left;
Node right;
public Node(Object data , Node parent
, Node left , Node right)
{
this.data = data;
this.parent = parent;
this.left = left;
this.right = right;
}
public String toString()
{
return "[data=" + data + "]";
}
public boolean equals(Object obj)
{
if (this == obj)
{
return true;
}
if (obj.getClass() == Node.class)
{
Node target = (Node)obj;
return data.equals(target.data)
&& left == target.left
&& right == target.right
&& parent == target.parent;
}
return false;
}
}
private Node root;
// 两个构造器用于创建排序二叉树
public SortedBinTree()
{
root = null;
}
public SortedBinTree(T o)
{
root = new Node(o , null , null , null);
} /**
* 添加节点
* @param ele
*/
@SuppressWarnings("unchecked")
public void add(T ele)
{
// 如果根节点为null
if (root == null)
{
root = new Node(ele , null , null , null);
}
else
{
Node current = root;
Node parent = null;
int cmp = 0;
// 搜索合适的叶子节点,以该叶子节点为父节点添加新节点
do
{
parent = current;
cmp = ele.compareTo(current.data);
// 如果新节点的值大于当前节点的值
if (cmp > 0)
{
// 以右子节点作为当前节点
current = current.right;
}
// 如果新节点的值小于当前节点的值
else
{
// 以左子节点作为当前节点
current = current.left;
}
}while (current != null);
// 创建新节点
Node newNode = new Node(ele , parent , null , null);
// 如果新节点的值大于父节点的值
if (cmp > 0)
{
// 新节点作为父节点的右子节点
parent.right = newNode;
}
// 如果新节点的值小于父节点的值
else
{
// 新节点作为父节点的左子节点
parent.left = newNode;
}
}
} /**
* 删除节点
* @param ele
*/
public void remove(T ele)
{
// 获取要删除的节点
Node target = getNode(ele);
// 如果要删除的节点为null,直接返回
if (target == null)
{
return;
}
// 如果要删除的节点的左、右子树为空
if (target.left == null
&& target.right == null)
{
// 如果要删除节点是根节点
if (target == root)
{
root = null;
}
else
{
// 要删除节点是父节点的左子节点
if (target == target.parent.left)
{
// 将target的父节点的left设为null
target.parent.left = null;
}
// 要删除节点是父节点的左子节点
else
{
// 将target的父节点的right设为null
target.parent.right = null;
}
target.parent = null;
}
}
// 如果要删除的节点只有右子树
else if (target.left == null
&& target.right != null)
{
// 如果要删除节点是根节点
if (target == root)
{
root = target.right;
}
else
{
// 如果要删除节点是父节点的左子节点
if (target == target.parent.left)
{
// 让target的父节点的left指向target的右子树
target.parent.left = target.right;
}
// 如果要删除节点是父节点的右子节点
else
{
// 让target的父节点的right指向target的右子树
target.parent.right = target.right;
}
//让target的右子树的parent指向target的parent
target.right.parent = target.parent;
}
}
// 如果要删除的节点只有左子树
else if(target.left != null
&& target.right == null)
{
// 被删除节点是根节点
if (target == root)
{
root = target.left;
}
else
{
// 被删除节点是父节点的左子节点
if (target == target.parent.left)
{
// 让target的父节点的left指向target的左子树
target.parent.left = target.left;
}
else
{
// 让target的父节点的right指向target的左子树
target.parent.right = target.left;
}
// 让target的左子树的parent指向target的parent
target.left.parent = target.parent;
}
}
// 如果要删除节点既有左子树,又有右子树
else
{
// leftMaxNode用于保存target节点的左子树中值最大的节点
Node leftMaxNode = target.left;
// 搜索target节点的左子树中值最大的节点
while (leftMaxNode.right != null)
{
leftMaxNode = leftMaxNode.right;
}
// 从原来的子树中删除leftMaxNode节点
leftMaxNode.parent.right = null;
// 让leftMaxNode的parent指向target的parent
leftMaxNode.parent = target.parent;
// 要删除节点是父节点的左子节点
if (target == target.parent.left)
{
// 让target的父节点的left指向leftMaxNode
target.parent.left = leftMaxNode;
}
// 要删除节点是父节点的右子节点
else
{
// 让target的父节点的right指向leftMaxNode
target.parent.right = leftMaxNode;
}
leftMaxNode.left = target.left;
leftMaxNode.right = target.right;
target.parent = target.left = target.right = null;
}
}
// 根据给定的值搜索节点
@SuppressWarnings("unchecked")
public Node getNode(T ele)
{
//从根节点开始搜索
Node p = root;
while (p != null)
{
int cmp = ele.compareTo(p.data);
// 如果搜索的值小于当前p节点的值
if (cmp < 0)
{
// 向左子树搜索
p = p.left;
}
// 如果搜索的值大于当前p节点的值
else if (cmp > 0)
{
// 向右子树搜索
p = p.right;
}
else
{
return p;
}
}
return null;
}
// 广度优先遍历
public List<Node> breadthFirst()
{
Queue<Node> queue = new ArrayDeque<Node>();
List<Node> list = new ArrayList<Node>();
if( root != null)
{
// 将根元素加入“队列”
queue.offer(root);
}
while(!queue.isEmpty())
{
// 将该队列的“队尾”的元素添加到List中
list.add(queue.peek());
Node p = queue.poll();
// 如果左子节点不为null,将它加入“队列”
if(p.left != null)
{
queue.offer(p.left);
}
// 如果右子节点不为null,将它加入“队列”
if(p.right != null)
{
queue.offer(p.right);
}
}
return list;
}
}
3、红黑树的讲解
public class RedBlackTree<T extends Comparable>
{
// 定义红黑树的颜色
private static final boolean RED = false;
private static final boolean BLACK = true;
static class Node
{
Object data;
Node parent;
Node left;
Node right;
// 节点的默认颜色是黑色
boolean color = BLACK;
public Node(Object data , Node parent
, Node left , Node right)
{
this.data = data;
this.parent = parent;
this.left = left;
this.right = right;
}
public String toString()
{
return "[data=" + data
+ ", color=" + color + "]";
}
public boolean equals(Object obj)
{
if (this == obj)
{
return true;
}
if (obj.getClass() == Node.class)
{
Node target = (Node)obj;
return data.equals(target.data)
&& color == target.color
&& left == target.left
&& right == target.right
&& parent == target.parent;
}
return false;
}
}
private Node root;
// 两个构造器用于创建排序二叉树
public RedBlackTree()
{
root = null;
}
public RedBlackTree(T o)
{
root = new Node(o , null , null , null);
}
// 添加节点
public void add(T ele)
{
// 如果根节点为null
if (root == null)
{
root = new Node(ele , null , null , null);
}
else
{
Node current = root;
Node parent = null;
int cmp = 0;
// 搜索合适的叶子节点,以该叶子节点为父节点添加新节点
do
{
parent = current;
cmp = ele.compareTo(current.data);
// 如果新节点的值大于当前节点的值
if (cmp > 0)
{
// 以右子节点作为当前节点
current = current.right;
}
// 如果新节点的值小于当前节点的值
else
{
// 以左子节点作为当前节点
current = current.left;
}
}
while (current != null);
// 创建新节点
Node newNode = new Node(ele , parent , null , null);
// 如果新节点的值大于父节点的值
if (cmp > 0)
{
// 新节点作为父节点的右子节点
parent.right = newNode;
}
// 如果新节点的值小于父节点的值
else
{
//新节点作为父节点的左子节点
parent.left = newNode;
}
// 维护红黑树
fixAfterInsertion(newNode);
}
}
// 删除节点
public void remove(T ele)
{
// 获取要删除的节点
Node target = getNode(ele);
// 如果要删除节点的左子树、右子树都不为空
if (target.left != null && target.right != null)
{
// 找到target节点中序遍历的前一个节点
// s用于保存target节点的左子树中值最大的节点
Node s = target.left;
// 搜索target节点的左子树中值最大的节点
while (s.right != null)
{
s = s.right;
}
// 用s节点来代替p节点
target.data = s.data;
target = s;
}
// 开始修复它的替换节点,如果该替换节点不为null
Node replacement = (target.left != null ?
target.left : target.right);
if (replacement != null)
{
// 让replacement的parent指向target的parent
replacement.parent = target.parent;
// 如果target的parent为null,表明target本身是根节点
if (target.parent == null)
{
root = replacement;
}
// 如果target是其父节点的左子节点
else if (target == target.parent.left)
{
// 让target的父节点left指向replacement
target.parent.left = replacement;
}
// 如果target是其父节点的右子节点
else
{
// 让target的父节点right指向replacement
target.parent.right = replacement;
}
// 彻底删除target节点
target.left = target.right = target.parent = null; // 修复红黑树
if (target.color == BLACK)
{
fixAfterDeletion(replacement);
}
}
// target本身是根节点
else if (target.parent == null)
{
root = null;
}
else
{
// target没有子节点,把它当成虚的替换节点。
// 修复红黑树
if (target.color == BLACK)
{
fixAfterDeletion(target);
}
if (target.parent != null)
{
// 如果target是其父节点的左子节点
if (target == target.parent.left)
{
// 将target的父节点left设为null
target.parent.left = null;
}
// 如果target是其父节点的右子节点
else if (target == target.parent.right)
{
// 将target的父节点right设为null
target.parent.right = null;
}
// 将target的parent设置null
target.parent = null;
}
}
}
// 根据给定的值搜索节点
public Node getNode(T ele)
{
// 从根节点开始搜索
Node p = root;
while (p != null)
{
int cmp = ele.compareTo(p.data);
// 如果搜索的值小于当前p节点的值
if (cmp < 0)
{
// 向左子树搜索
p = p.left;
}
// 如果搜索的值大于当前p节点的值
else if (cmp > 0)
{
// 向右子树搜索
p = p.right;
}
else
{
return p;
}
}
return null;
}
// 广度优先遍历
public List<Node> breadthFirst()
{
Queue<Node> queue = new ArrayDeque<Node>();
List<Node> list = new ArrayList<Node>();
if( root != null)
{
// 将根元素入“队列”
queue.offer(root);
}
while(!queue.isEmpty())
{
// 将该队列的“队尾”的元素添加到List中
list.add(queue.peek());
Node p = queue.poll();
// 如果左子节点不为null,将它入“队列”
if(p.left != null)
{
queue.offer(p.left);
}
// 如果右子节点不为null,将它入“队列”
if(p.right != null)
{
queue.offer(p.right);
}
}
return list;
}
// 插入节点后修复红黑树
private void fixAfterInsertion(Node x)
{
x.color = RED;
// 直到x节点的父节点不是根,且x的父节点不是红色
while (x != null && x != root
&& x.parent.color == RED)
{
// 如果x的父节点是其父节点的左子节点
if (parentOf(x) == leftOf(parentOf(parentOf(x))))
{
// 获取x的父节点的兄弟节点
Node y = rightOf(parentOf(parentOf(x)));
// 如果x的父节点的兄弟节点是红色
if (colorOf(y) == RED)
{
// 将x的父节点设为黑色
setColor(parentOf(x), BLACK);
// 将x的父节点的兄弟节点设为黑色
setColor(y, BLACK);
// 将x的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
}
// 如果x的父节点的兄弟节点是黑色
else
{
// 如果x是其父节点的右子节点
if (x == rightOf(parentOf(x)))
{
// 将x的父节点设为x
x = parentOf(x);
rotateLeft(x);
}
// 把x的父节点设为黑色
setColor(parentOf(x), BLACK);
// 把x的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
}
// 如果x的父节点是其父节点的右子节点
else
{
// 获取x的父节点的兄弟节点
Node y = leftOf(parentOf(parentOf(x)));
// 如果x的父节点的兄弟节点是红色
if (colorOf(y) == RED)
{
// 将x的父节点设为黑色。
setColor(parentOf(x), BLACK);
// 将x的父节点的兄弟节点设为黑色
setColor(y, BLACK);
// 将x的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
// 将x设为x的父节点的节点
x = parentOf(parentOf(x));
}
// 如果x的父节点的兄弟节点是黑色
else
{
// 如果x是其父节点的左子节点
if (x == leftOf(parentOf(x)))
{
//将x的父节点设为x
x = parentOf(x);
rotateRight(x);
}
// 把x的父节点设为黑色
setColor(parentOf(x), BLACK);
// 把x的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
// 将根节点设为黑色
root.color = BLACK;
}
// 删除节点后修复红黑树
private void fixAfterDeletion(Node x)
{
// 直到x不是根节点,且x的颜色是黑色
while (x != root && colorOf(x) == BLACK)
{
// 如果x是其父节点的左子节点
if (x == leftOf(parentOf(x)))
{
// 获取x节点的兄弟节点
Node sib = rightOf(parentOf(x));
// 如果sib节点是红色
if (colorOf(sib) == RED)
{
// 将sib节点设为黑色
setColor(sib, BLACK);
// 将x的父节点设为红色
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
// 再次将sib设为x的父节点的右子节点
sib = rightOf(parentOf(x));
}
// 如果sib的两个子节点都是黑色
if (colorOf(leftOf(sib)) == BLACK
&& colorOf(rightOf(sib)) == BLACK)
{
// 将sib设为红色
setColor(sib, RED);
// 让x等于x的父节点
x = parentOf(x);
}
else
{
// 如果sib的只有右子节点是黑色
if (colorOf(rightOf(sib)) == BLACK)
{
// 将sib的左子节点也设为黑色
setColor(leftOf(sib), BLACK);
// 将sib设为红色
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
// 设置sib的颜色与x的父节点的颜色相同
setColor(sib, colorOf(parentOf(x)));
// 将x的父节点设为黑色
setColor(parentOf(x), BLACK);
// 将sib的右子节点设为黑色
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
}
// 如果x是其父节点的右子节点
else
{
// 获取x节点的兄弟节点
Node sib = leftOf(parentOf(x));
// 如果sib的颜色是红色
if (colorOf(sib) == RED)
{
// 将sib的颜色设为黑色
setColor(sib, BLACK);
// 将sib的父节点设为红色
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
}
// 如果sib的两个子节点都是黑色
if (colorOf(rightOf(sib)) == BLACK
&& colorOf(leftOf(sib)) == BLACK)
{
// 将sib设为红色
setColor(sib, RED);
//让x等于x的父节点
x = parentOf(x);
}
else
{
// 如果sib只有左子节点是黑色
if (colorOf(leftOf(sib)) == BLACK)
{
// 将sib的右子节点也设为黑色
setColor(rightOf(sib), BLACK);
// 将sib设为红色
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
// 将sib的颜色设为与x的父节点颜色相同
setColor(sib, colorOf(parentOf(x)));
// 将x的父节点设为黑色
setColor(parentOf(x), BLACK);
// 将sib的左子节点设为黑色
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
}
setColor(x, BLACK);
}
// 获取指定节点的颜色
private boolean colorOf(Node p)
{
return (p == null ? BLACK : p.color);
}
// 获取指定节点的父节点
private Node parentOf(Node p)
{
return (p == null ? null: p.parent);
}
// 为指定节点设置颜色
private void setColor(Node p, boolean c)
{
if (p != null)
{
p.color = c;
}
}
// 获取指定节点的左子节点
private Node leftOf(Node p)
{
return (p == null) ? null: p.left;
}
// 获取指定节点的右子节点
private Node rightOf(Node p)
{
return (p == null) ? null: p.right;
}
/**
* 执行如下转换
* p r
* r p
* q q
*/
private void rotateLeft(Node p)
{
if (p != null)
{
// 取得p的右子节点
Node r = p.right;
Node q = r.left;
// 将r的左子节点链到p的右节点链上
p.right = q;
// 让r的左子节点的parent指向p节点
if (q != null)
{
q.parent = p;
}
r.parent = p.parent;
// 如果p已经是根节点
if (p.parent == null)
{
root = r;
}
// 如果p是其父节点的左子节点
else if (p.parent.left == p)
{
// 将r设为p的父节点的左子节点
p.parent.left = r;
}
else
{
// 将r设为p的父节点的右子节点
p.parent.right = r;
}
r.left = p;
p.parent = r;
}
}
/**
* 执行如下转换
* p l
* l p
* q q
*/
private void rotateRight(Node p)
{
if (p != null)
{
// 取得p的左子节点
Node l = p.left;
Node q = l.right;
// 将l的右子节点链到p的左节点链上
p.left = q;
// 让l的右子节点的parent指向p节点
if (q != null)
{
q.parent = p;
}
l.parent = p.parent;
// 如果p已经是根节点
if (p.parent == null)
{
root = l;
}
// 如果p是其父节点的右子节点
else if (p.parent.right == p)
{
// 将l设为p的父节点的右子节点
p.parent.right = l;
}
else
{
// 将l设为p的父节点的左子节点
p.parent.left = l;
}
l.right = p;
p.parent = l;
}
}
// 实现中序遍历
public List<Node> inIterator()
{
return inIterator(root);
}
private List<Node> inIterator(Node node)
{
List<Node> list = new ArrayList<Node>();
// 递归处理左子树
if (node.left != null)
{
list.addAll(inIterator(node.left));
}
// 处理根节点
list.add(node);
// 递归处理右子树
if (node.right != null)
{
list.addAll(inIterator(node.right));
}
return list;
}
}