【做题】SDOI2017苹果树——dfs序的运用

时间:2021-08-10 11:17:20

原文链接 https://www.cnblogs.com/cly-none/p/9845046.html

题意:给出一棵\(n\)个结点的树,在第\(i\)个结点上有\(a_i\)个权值为\(v_i\)的物品。\(1\)号结点是根结点。你需要选出若干个物品(设选了\(t\)个),满足:

  • 如果选了结点\(i\)上的物品,那么\(i\)到根的链上每个结点都至少要选一个物品。
  • 设有选取物品的结点的最大深度为\(h\),那么\(t \leq h + k\),\(k\)为一个给定的常数。

在此基础上,你需要最大化所选的物品的权值和。

\(n \leq 2 \times 10^4, \, k \leq 5 \times 10^5, \, n \times k \leq 2.5 \times 10^7\)

显然,最终做法的复杂度应该是\(O(nk)\)的。

但这个问题比较复杂,直接想比较困难。因此,我们先考虑问题的简化版。

问题1

当第二个条件改为\(t \leq k\)时,怎么做?

对于这种一个结点的决策影响其子树的问题,我们可以对dfs序倒过来dp。确切地说,考虑当前是\(i\),那么\(i\)的子树就是\(dfn_i\)之后的一段连续区间。那么,把dfs序倒过来后,结点\(i\)就有两种可能:

  • 选了\(i\)上的物品。就是一个多重背包,从\(dp_{dfn_i + 1}\)上更新过来。
  • 不选\(i\)上的物品。那\(i\)子树中的所有物品都不能选。从\(dp_{dfn_i + sz_i}\)上更新过来。

用单调队列优化多重背包后,就能做到\(O(nk)\)。


然而,回过头来,我们依旧对\(t \leq h + k\)感到棘手。尝试按常规方法dp对\(k+h-t\)记录答案,但没有用。这个限制其实就在于,选出一条一段是根结点的链,链上每个点都取一个不计入\(t\)的物品。我们设这条链除\(1\)外的端点为\(x\)。考虑\(\forall i, \, a_i = 1\)的部分分。那么,假如我们已经确定了\(x\),则剩下的答案就是删去\(1\)到\(x\)的链,对剩下的森林做问题1的结果。

因此,我们可以考虑下面这个问题:

问题2

预处理:对于所有\(x\),删去\(x\)到根的路径后剩下的森林的问题1的答案。

博主认为,这个问题的解法相当有趣,也挺难想到的。

考虑剩下的森林的一半就是在dfs序上,从\(dfn_i + 1\)到\(n\)的一段区间(包括了\(i\)的子树)。这个部分我们在dp时就已经把答案求出来了。然而,另一部分在dfs序上既不是一段后缀,也不是连续的区间。\([1,dfn_i-1]\)中还混入了\(i\)的所有祖先。

因此,我们把这棵树左右翻转,把剩下森林的两半交换位置。也就是,再生成一个dfs序,但每个结点反序访问它的孩子结点。这样,我们就把森林的另一部分也表示为了dfs序的一个后缀。值得注意的是,\(i\)的子树不能算两次,所以这个后缀应该是[dfn_i + sz_i,n]。

这样,我们做出两个dfs序,对每个做问题1的dp,就能解决此问题。


然后就是处理\(a_i \neq 1\)的情况。上面的算法会错误,就在于\(x\)到根的路径上的结点,可能选了多个物品。那么,我们就对每个结点\(i\)建一个辅助点\(i'\),存放了\(a_i - 1\)个原来在\(i\)上的物品。这样,对于任何一个非辅助结点,它到根的路径上所有点都只有一个物品。

这样就能把最终问题转化为问题1,\(O(nk)\)地解决本题。

#include <bits/stdc++.h>
using namespace std;
const int N = 40010, K = 500010, SIZE = 51000010;
int n,k,val[N],num[N],dfn[N],sz[N],fa[N],cnt,dis[N],ans,rec[N],spadp[SIZE],spag[SIZE];
vector<int> ch[N];
int *dp[N],*g[N];
void dfs(int pos) {
sz[pos] = 1;
for (int i = 0 ; i < (int)ch[pos].size() ; ++ i) {
dfs(ch[pos][i]);
sz[pos] += sz[ch[pos][i]];
}
dfn[rec[pos] = ++cnt] = pos;
}
void fsd(int pos) {
dis[pos] += val[pos];
for (int i = (int)ch[pos].size() - 1 ; i >= 0 ; -- i) {
dis[ch[pos][i]] = dis[pos];
fsd(ch[pos][i]);
}
dfn[++cnt] = pos;
}
void update(int las,int cur) {
static int q[K],l,r;
l = 1, r = 0;
q[++r] = 0;
for (int i = 1 ; i <= k ; ++ i) {
while (l <= r && i - q[l] > num[dfn[cur]])
++ l;
if (l <= r)
dp[cur][i] = dp[las][q[l]] + val[dfn[cur]] * (i - q[l]);
else dp[cur][i] = 0;
while (l <= r && dp[las][i] > dp[las][q[r]] + val[dfn[cur]] * (i - q[r]))
-- r;
q[++r] = i;
}
}
void init() {
ans = 0;
for (int i = 0 ; i <= 2 * n ; ++ i) {
ch[i].clear();
dp[i] = spadp + i * (k + 1);
g[i] = spag + i * (k + 1);
memset(dp[i],0,sizeof(int) * (k + 1));
memset(g[i],0,sizeof(int) * (k + 1));
}
dis[1] = 0;
}
int main() {
int T;
scanf("%d",&T);
while (T --) {
scanf("%d%d",&n,&k);
init();
for (int i = 1 ; i <= n ; ++ i)
scanf("%d%d%d",&fa[i],&num[i],&val[i]);
for (int i = 2 ; i <= n ; ++ i)
ch[fa[i]].push_back(i);
for (int i = 1 ; i <= n ; ++ i) {
ch[i].push_back(i+n);
val[i+n] = val[i];
num[i+n] = num[i] - 1;
num[i] = 1;
}
cnt = 0;
dfs(1);
for (int i = 1 ; i <= 2 * n ; ++ i) {
update(i-1,i);
for (int j = 1 ; j <= k ; ++ j)
dp[i][j] = max(dp[i][j],dp[i - sz[dfn[i]]][j]), dp[i][j] = max(dp[i][j],dp[i][j-1]);
}
for (int i = 1 ; i <= 2 * n ; ++ i)
for (int j = 1 ; j <= k ; ++ j)
g[i][j] = dp[i][j];
cnt = 0;
fsd(1);
for (int i = 1 ; i <= 2 * n ; ++ i) {
update(i-1,i);
for (int j = 1 ; j <= k ; ++ j)
dp[i][j] = max(dp[i][j],dp[i - sz[dfn[i]]][j]), dp[i][j] = max(dp[i][j],dp[i][j-1]);
}
for (int i = 1 ; i <= 2 * n ; ++ i) {
if (dfn[i] > n) continue;
int p = rec[dfn[i]] - sz[dfn[i]];
for (int j = 0 ; j <= k ; ++ j)
ans = max(ans,dis[dfn[i]] + dp[i-1][j] + g[p][k-j]);
}
printf("%d\n",ans);
}
return 0;
}

小结:一道对dfs序上dp进行拓展的好题。当一个问题分成了性质相同的两半,而前者容易解决,后者难以解决的问题时,寻找方式来交换这两部分的位置,最后合并。这个思路应该记住。