1. 求解最小生成树算法主要有两种,分别是prim算法与kruskal算法,下面使用的是C++语言实现的kruskal算法,之前使用Java语言描述Kruskal算法的时候已经比较详细了,博客地址为:/qq_39445165/article/details/9194905
2. 下面是具体的C++代码:
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxV = 110;
const int maxE = 10010;
struct edge{
int u, v;
int cost;
}E[maxE];
bool cmp(edge a, edge b){
return < ;
}
//并查集
int father[maxV];
int findFather(int x){
int a = x;
while(x != father[x]){
x = father[x];
}
//路径压缩
while(a != father[a]){
int z = a;
a = father[a];
father[z] = a;
}
return x;
}
//kruskal算法部分赶回最小生成树的边权之和,参数n为顶点的个数,m为图的边数
int kruskal(int n, int m){
int ans = 0, Num_Edge = 0;
for(int i = 0; i < n; ++i){
father[i] = i;
}
sort(E, E + m, cmp);
for(int i = 0; i < m; ++i){
int faU = findFather(E[i].u);
int faV = findFather(E[i].v);
if(faU != faV){
father[faU] = faV;
ans += E[i].cost;
Num_Edge++;
if(Num_Edge == n - 1) break;
}
}
if(Num_Edge != n - 1){
return -1;
}else{
return ans;
}
}
int main(void){
int n, m;
scanf("%d%d", &n, &m);
for(int i = 0; i < m; ++i){
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].cost);
}
int ans = kruskal(n, m);
printf("%d\n", ans);
return 0;
}