Spring AI与DeepSeek实战三:打造企业知识库-一、概述

时间:2025-04-03 22:40:39

企业应用集成大语言模型(LLM)落地的两大痛点:

  • 知识局限性:LLM依赖静态训练数据,无法覆盖实时更新或垂直领域的知识;
  • 幻觉:当LLM遇到训练数据外的提问时,可能生成看似合理但错误的内容。

用最低的成本解决以上问题,需要使用 RAG 技术,它是一种结合信息检索技术与 LLM 的框架,通过从外部 知识库 动态检索相关上下文信息,并将其作为 Prompt 融入生成过程,从而提升模型回答的准确性;

本文将以AI智能搜索为场景,基于 Spring AI 与 RAG 技术结合,通过构建实时知识库增强大语言模型能力,实现企业级智能搜索场景与个性化推荐,攻克 LLM 知识滞后与生成幻觉两大核心痛点。

关于 Spring AI 与 DeepSeek 的集成,以及 API-KEY 的申请等内容,可参考文章《Spring AI与DeepSeek实战一:快速打造智能对话应用