同态加密算法简述

时间:2025-03-30 17:03:52
/** * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see </licenses/>. */ import .*; import .*; /** * Paillier Cryptosystem <br> * <br> * References: <br> * [1] Pascal Paillier, * "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes," * EUROCRYPT'99. URL: * <a href="/smart/rd/publications/pdf/">http: * ///smart/rd/publications/pdf/</a><br> * * [2] Paillier cryptosystem from Wikipedia. URL: * <a href="/wiki/Paillier_cryptosystem">http://en. * /wiki/Paillier_cryptosystem</a> * * @author Kun Liu (kunliu1@) * @version 1.0 */ public class Paillier { /** * p and q are two large primes. lambda = lcm(p-1, q-1) = * (p-1)*(q-1)/gcd(p-1, q-1). */ private BigInteger p, q, lambda; /** * n = p*q, where p and q are two large primes. */ public BigInteger n; /** * nsquare = n*n */ public BigInteger nsquare; /** * a random integer in Z*_{n^2} where gcd (L(g^lambda mod n^2), n) = 1. */ private BigInteger g; /** * number of bits of modulus */ private int bitLength; /** * Constructs an instance of the Paillier cryptosystem. * * @param bitLengthVal * number of bits of modulus * @param certainty * The probability that the new BigInteger represents a prime * number will exceed (1 - 2^(-certainty)). The execution time of * this constructor is proportional to the value of this * parameter. */ public Paillier(int bitLengthVal, int certainty) { KeyGeneration(bitLengthVal, certainty); } /** * Constructs an instance of the Paillier cryptosystem with 512 bits of * modulus and at least 1-2^(-64) certainty of primes generation. */ public Paillier() { KeyGeneration(512, 64); } /** * Sets up the public key and private key. * * @param bitLengthVal * number of bits of modulus. * @param certainty * The probability that the new BigInteger represents a prime * number will exceed (1 - 2^(-certainty)). The execution time of * this constructor is proportional to the value of this * parameter. */ public void KeyGeneration(int bitLengthVal, int certainty) { bitLength = bitLengthVal; /* * Constructs two randomly generated positive BigIntegers that are * probably prime, with the specified bitLength and certainty. */ p = new BigInteger(bitLength / 2, certainty, new Random()); q = new BigInteger(bitLength / 2, certainty, new Random()); n = (q); nsquare = (n); g = new BigInteger("2"); lambda = ().multiply(()) .divide(().gcd(())); /* check whether g is good. */ if ((lambda, nsquare).subtract().divide(n).gcd(n).intValue() != 1) { ("g is not good. Choose g again."); (1); } } /** * Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function * explicitly requires random input r to help with encryption. * * @param m * plaintext as a BigInteger * @param r * random plaintext to help with encryption * @return ciphertext as a BigInteger */ public BigInteger Encryption(BigInteger m, BigInteger r) { return (m, nsquare).multiply((n, nsquare)).mod(nsquare); } /** * Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function * automatically generates random input r (to help with encryption). * * @param m * plaintext as a BigInteger * @return ciphertext as a BigInteger */ public BigInteger Encryption(BigInteger m) { BigInteger r = new BigInteger(bitLength, new Random()); return (m, nsquare).multiply((n, nsquare)).mod(nsquare); } /** * Decrypts ciphertext c. plaintext m = L(c^lambda mod n^2) * u mod n, where * u = (L(g^lambda mod n^2))^(-1) mod n. * * @param c * ciphertext as a BigInteger * @return plaintext as a BigInteger */ public BigInteger Decryption(BigInteger c) { BigInteger u = (lambda, nsquare).subtract().divide(n).modInverse(n); return (lambda, nsquare).subtract().divide(n).multiply(u).mod(n); } /** * sum of (cipher) em1 and em2 * * @param em1 * @param em2 * @return */ public BigInteger cipher_add(BigInteger em1, BigInteger em2) { return (em2).mod(nsquare); } /** * main function * * @param str * intput string */ public static void main(String[] str) { /* instantiating an object of Paillier cryptosystem */ Paillier paillier = new Paillier(); /* instantiating two plaintext msgs */ BigInteger m1 = new BigInteger("20"); BigInteger m2 = new BigInteger("60"); /* encryption */ BigInteger em1 = (m1); BigInteger em2 = (m2); /* printout encrypted text */ (em1); (em2); /* printout decrypted text */ ((em1).toString()); ((em2).toString()); /* * test homomorphic properties -> D(E(m1)*E(m2) mod n^2) = (m1 + m2) mod * n */ // m1+m2,求明文数值的和 BigInteger sum_m1m2 = (m2).mod(); ("original sum: " + sum_m1m2.toString()); // em1+em2,求密文数值的乘 BigInteger product_em1em2 = (em2).mod(); ("encrypted sum: " + product_em1em2.toString()); ("decrypted sum: " + (product_em1em2).toString()); /* test homomorphic properties -> D(E(m1)^m2 mod n^2) = (m1*m2) mod n */ // m1*m2,求明文数值的乘 BigInteger prod_m1m2 = (m2).mod(); ("original product: " + prod_m1m2.toString()); // em1的m2次方,再mod BigInteger expo_em1m2 = (m2, ); ("encrypted product: " + expo_em1m2.toString()); ("decrypted product: " + (expo_em1m2).toString()); //sum test ("--------------------------------"); Paillier p = new Paillier(); BigInteger t1 = new BigInteger("21");(()); BigInteger t2 = new BigInteger("50");(()); BigInteger t3 = new BigInteger("50");(()); BigInteger et1 = (t1);(()); BigInteger et2 = (t2);(()); BigInteger et3 = (t3);(()); BigInteger sum = new BigInteger("1"); sum = p.cipher_add(sum, et1); sum = p.cipher_add(sum, et2); sum = p.cipher_add(sum, et3); ("sum: "+()); ("decrypted sum: "+(sum).toString()); ("--------------------------------"); } }

相关文章