写Go的人应该都听过Rob Pike的这句话
Do not communicate by sharing memory; instead, share memory by communicating.
相信很多朋友和我一样,在实际应用中总感觉不到好处,为了用channel而用。但以我的切身体会来说,这是写代码时碰到的场景不复杂、对channel不熟悉导致的,所以希望这篇文章能给大家带来点新思路,对Golang优雅的channel有更深的认识 :)
Fan In/Out
数据的输出有时候需要做扇出/入(Fan In/Out),但是在函数中调用常常得修改接口,而且上下游对于数据的依赖程度非常高,所以一般使用通过channel进行Fan In/Out,这样就可以轻易实现类似于shell里的管道。
func fanIn(input1, input2 <-chan string) <-chan string { c := make(chan string) go func() { for { select { case s := <-input1: c <- s case s := <-input2: c <- s } } }() return c }
同步Goroutine
两个goroutine之间同步状态,例如A goroutine需要让B goroutine退出,一般做法如下:
func main() { g = make(chan int) quit = make(chan bool) go B() for i := 0; i < 3; i++ { g <- i } quit <- true // 没办法等待B的退出只能Sleep ("Main quit") } func B() { for { select { case i := <-g: (i + 1) case <-quit: ("B quit") return } } } /* Output: 1 2 3 Main quit */
可是了main函数没办法等待B合适地退出,所以B quit 没办法打印,程序直接退出了。然而,chan是Go里的第一对象,所以可以把chan传入chan中,所以上面的代码可以把quit 定义为chan chan bool,以此控制两个goroutine的同步
func main() { g = make(chan int) quit = make(chan chan bool) go B() for i := 0; i < 5; i++ { g <- i } wait := make(chan bool) quit <- wait <-wait //这样就可以等待B的退出了 ("Main Quit") } func B() { for { select { case i := <-g: (i + 1) case c := <-quit: c <- true ("B Quit") return } } } /* Output 1 2 3 B Quit Main Quit */
分布式递归调用
在现实生活中,如果你要找美国总统聊天,你会怎么做?第一步打电话给在美国的朋友,然后他们也会发动自己的关系网,再找可能认识美国总统的人,以此类推,直到找到为止。这在Kadmelia分布式系统中也是一样的,如果需要获取目标ID信息,那么就不停地查询,被查询节点就算没有相关信息,也会返回它觉得最近节点,直到找到ID或者等待超时。 好了,这个要用Go来实现怎么做呢?
func recursiveCall(ctx , id []byte, initialNodes []*node){ seen := map[string]*node{} //已见过的节点记录 request := make(chan *node, 3) //设置请求节点channel // 输入初始节点 go func() { for _, n := range initialNodes { request <- n } }() OUT: for { //循环直到找到数据 if data != nil { return } // 在新的请求,超时和上层取消请求中select select { case n := <-request: go func() { // 发送新的请求 response := (ctx, n, MethodFindValue, id) select { case <-(): case msg :=<-response: seen[responseToNode(response)] = n //更新已见过的节点信息 // 加载新的节点 for _, rn := range LoadNodeInfoFromByte(msg[PayLoadStart:]) { () _, ok := seen[()] () // 见过了,跳过这个节点 if ok { continue } AddNode(rn) // 将新的节点送入channel request <- rn } } } }() case <-(500 * ): break OUT // break至外层,否则仅仅是跳至loop外 case <-(): break OUT } } return }
这时的buffered channel类似于一个局部queue,对需要的节点进行处理,但这段代码的精妙之处在于,这里的block操作是select的,随时可以取消,而不是要等待或者对queue的长度有认识。
你对这三种channel的用法有什么疑问,欢迎讨论╮(╯▽╰)╭