ROS下通过USB端口读取摄像头数据(包括笔记本自带摄像头)

时间:2025-03-30 08:27:08

本人测试环境:ubuntu18.04。

这里有3中方法,方法1为ROS驱动版本,方法3为自己写的,推荐自己手写方式。

方法1:使用usb_cam驱动读取

1.1 安装编译usb_cam驱动

在终端运行以下命令:

cd ~/catkin_ws/src
git clone /bosch-ros-pkg/usb_cam.git
cd ..
catkin_make

1.2 测试usb_cam驱动

  • 打开摄像头。
source devel/
rosrun usb_cam usb_cam_node

默认打开的是/dev/video0摄像头,如果想要打开自己的usb摄像头,可以改为/dev/video1(查看自己的usb接口对应名字)。运行以上程序并不能看到图像,因为只是打开摄像头。

  • 运行显示图像
rosrun image_view image_view image:=/usb_cam/image_raw

1.3 使用launch打开

也可以使用launch文件对以上操作进行统一编写,如下:

<launch>
  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
    <param name="video_device" value="/dev/video0" />
    <param name="image_width" value="640" />
    <param name="image_height" value="480" />
    <param name="pixel_format" value="yuyv" />
    <param name="camera_frame_id" value="usb_cam" />
    <param name="io_method" value="mmap"/>
  </node>
  <node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">
    <remap from="image" to="/usb_cam/image_raw"/>
    <param name="autosize" value="true" />
  </node>
</launch>

同样,可以对相应参数进行修改,推荐使用这种方法。

方法2:video-stream-opencv

推荐使用方式1进行读取,方法2只是用来进行另一种选择。

2.1 安装video-stream-opencv

在终端运行以下命令进行安装:

cd ~/catkin_ws/src/
git clone /ros-drivers/video_stream_opencv.git
cd .. 
catkin_make

2.2 测试

source devel/
rosrun video_stream_opencv test_video_resource.py 0  #后面的0是摄像头编号,也就是笔记本自带摄像头

方法3:自己手写

推荐这个方法,这种方式需要配置文件,大致改动如下:

# 主要配置opencv
find_package(catkin REQUIRED COMPONENTS
  cv_bridge
  roscpp
  sensor_msgs
  std_msgs
)
find_package(OpenCV REQUIRED)

...
target_link_libraries(node_fisheye ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
#include "ros/"
#include <sensor_msgs/>
#include <sensor_msgs/image_encodings.h>
#include <cv_bridge/cv_bridge.h>
#include <iostream>
#include <sstream>
#include <vector>
#include <opencv2/core/>
#include <opencv2/highgui/>
#include <opencv2/>

using namespace std;
using namespace cv;

int main(int argc, char **argv)
{
    ros::init(argc, argv, "node_fisheye");
    ros::NodeHandle n;
    ros::Publisher image_pub_ = n.advertise<sensor_msgs::Image>("fisheye", 1000);
    
    VideoCapture camera(0);//设备驱动号
    if (!camera.isOpened())
    {
        printf("Failed to open camera!");
        return -1;
    }
    camera.set(CV_CAP_PROP_FRAME_WIDTH, 1024);
    camera.set(CV_CAP_PROP_FRAME_HEIGHT, 768 );
    camera.set(CV_CAP_PROP_FPS, 30);
    camera.set(CV_CAP_PROP_EXPOSURE, 1.0);
    camera.set(CV_CAP_PROP_FOURCC, CV_FOURCC('M','J','P','G'));
    
    auto fps = camera.get(CAP_PROP_FPS);
    
    //vector<int> compression_params;
    //compression_params.push_back(CV_IMWRITE_PNG_COMPRESSION);
    //compression_params.push_back(0);
    
    ros::Rate loop_rate(1000);
    
    while (ros::ok())
    {
        Mat frame;
        camera >> frame;
        
        cv_bridge::CvImage img_bridge;
        sensor_msgs::Image img_msg; // >> message to be sent
        std_msgs::Header header; // empty header
        header.stamp = ros::Time::now(); // time
        img_bridge = cv_bridge::CvImage(header, sensor_msgs::image_encodings::BGR8, frame);
        img_bridge.toImageMsg(img_msg);
        image_pub_.publish(img_msg);
        
        /*
        sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg();
        // 发布图像
        image_pub_.publish(*msg);*/
        
        imshow("frame", frame);
        if (waitKey(30) > 0)
        {
            cout << "frame size: " << frame.rows << " x " <<frame.cols << endl;
            camera.release();
            frame.release();
            break;
        }
        //imu_pub.publish(imu_msg); //开始发布
        ros::spinOnce();
        loop_rate.sleep();
    }
    return 0;
}