Java8 ConcurrentHashMap实现原理

时间:2025-03-29 07:46:25

Java8 ConcurrentHashMap实现原理,基本和Java8的HashMap相同,不同于他的是前者保证了线程的安全性,和Java7的ConcurrentHashMap区别在于,两者保证线程安全性的机理不同,Java7中采用了“分段”锁的概念,每一个分段都有一把锁,锁内存储的着数据,锁的个数在初始化之后不能扩容,Java7 ConcurrentHashMap原理 传送门

但是Java8摒弃了这种设计理念,和Java8一样采用数组+链表+红黑树的概念来实现,那么要保证是线程安全(synchronized+CAS)的,所以比起Java8的HashMap,代码更加的复杂... 

数据结构和Java8HashMap基本雷同  

字段和成员

 /* ---------------- 部分常量-------------- */

    /**
     * 最大容量,默认是2的30次方
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 默认容量是2的4次方
     */
    private static final int DEFAULT_CAPACITY = 16;

    /**
     * 最大的数组大小
     */
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 并发级别
     */
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * 负载因子
     */
    private static final float LOAD_FACTOR = 0.75f;

    /**
     * 链表达到8个元素时会切换程红黑树结构
     */
    static final int TREEIFY_THRESHOLD = 8; 

/* ---------------- 部分字段-------------- */

    /**
     * 默认为null,初始化发生在第一次插入操作,默认大小为16的数组,
     * 用来存储Node节点数据,扩容时大小总是2的幂次方
     */
    transient volatile Node<K,V>[] table;

    /**
     * 默认为null,扩容时新生成的数组,其大小为原数组的两倍
     */
    private transient volatile Node<K,V>[] nextTable;

    /**
     * 基计数器值,主要用于无争用时
     */
    private transient volatile long baseCount;

    /**
     * 默认为0,用来控制table的初始化和扩容操作
     * -1: table正在初始化
     * -N:有N-1个线程正在进行扩容操作  
     *  0:table没有被初始化
     * 正数:表示初始化或者是下一次进行扩容的大小
     */
    private transient volatile int sizeCtl;

    /**
     * 调整大小时要分割的下一个表索引(加1)。
     */
    private transient volatile int transferIndex;

    /**
     * 自旋锁(通过CAS锁定)在调整大小和/或创建反单元格时使用.
     */
    private transient volatile int cellsBusy;

    /**
     * 计数器单元表。当非空时,大小是2的乘方
     */
    private transient volatile CounterCell[] counterCells;

数据存储结构

结构1、采用是的是Node内部类

 每一个类都持有next的引用,实际就是链表的结构

    static class Node<K,V> implements <K,V> {
        final int hash;
        final K key;
        volatile V val;
        volatile Node<K,V> next;

 结构2、采用是的TreeNode内部类,继承了Node

   这就是红黑树了

    static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left; //左节点
        TreeNode<K,V> right; //右节点
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, Node<K,V> next,
                 TreeNode<K,V> parent) {
            super(hash, key, val, next);
             = parent;
        }

 结构3、内部类TreeBin 同样继承了Node,在转换成红黑树的时候使用

    static final class TreeBin<K,V> extends Node<K,V> {
        TreeNode<K,V> root;
        volatile TreeNode<K,V> first;
        volatile Thread waiter;
        volatile int lockState;
        // values for lockState
        static final int WRITER = 1; // set while holding write lock
        static final int WAITER = 2; // set when waiting for write lock
        static final int READER = 4; // increment value for setting read lock

 

初始化方法

    //默认无参构造
    public ConcurrentHashMap() {
    }

    //指定初始化大小
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
         = cap;
    }
    
    //指定初始化大小和负载因子
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }

    //指定初始化容量、负载因子、并行级别
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
         = cap;
    }

    //有初始元素的初始化
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
         = DEFAULT_CAPACITY;
        putAll(m);
    }

计算阈值与HashMap中一致 

    //结果为2的幂次方,大于且最靠近指定的值
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

复制所有的元素:

putAll() 

    public void putAll(Map<? extends K, ? extends V> m) {
        tryPresize(());//扩容
        //循环复制元素
        for (<? extends K, ? extends V> e : ())
            putVal((), (), false);
    }

扩容:扩容的容量是原来容量的两倍

 tryPresize()

 

// 首先要说明的是,方法参数 size 传进来的时候就已经翻了倍了
private final void tryPresize(int size) {
    // c:size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。
    int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
        tableSizeFor(size + (size >>> 1) + 1);
    int sc;
    while ((sc = sizeCtl) >= 0) {
        Node<K,V>[] tab = table; int n;

        // 这个 if 分支和之前说的初始化数组的代码基本上是一样的,在这里,我们可以不用管这块代码
        if (tab == null || (n = ) == 0) {
            n = (sc > c) ? sc : c;
            if ((this, SIZECTL, sc, -1)) {
                try {
                    if (table == tab) {
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = nt;
                        sc = n - (n >>> 2); // 0.75 * n
                    }
                } finally {
                    sizeCtl = sc;
                }
            }
        }
        else if (c <= sc || n >= MAXIMUM_CAPACITY)
            break;
        else if (tab == table) {
            // 我没看懂 rs 的真正含义是什么,不过也关系不大
            int rs = resizeStamp(n);

            if (sc < 0) {
                Node<K,V>[] nt;
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                // 2. 用 CAS 将 sizeCtl 加 1,然后执行 transfer 方法
                //    此时 nextTab 不为 null
                if ((this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            // 1. 将 sizeCtl 设置为 (rs << RESIZE_STAMP_SHIFT) + 2)
            //     我是没看懂这个值真正的意义是什么?不过可以计算出来的是,结果是一个比较大的负数
            //  调用 transfer 方法,此时 nextTab 参数为 null
            else if ((this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);//具体的扩容后面说
        }
    }
}

 

put() 过程

    public V put(K key, V value) {
        return putVal(key, value, false);//实际真正执行的方法
    }
final V putVal(K key, V value, boolean onlyIfAbsent) {
    //由此可以得出不支持null键和null值
    if (key == null || value == null) throw new NullPointerException();
    // 计算hash 值
    int hash = spread(());
    // 用于记录相应链表的长度
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // 如果数组"空",进行数组初始化
        if (tab == null || (n = ) == 0)
            // 初始化数组
            tab = initTable();

        // 找该 hash 值对应的数组下标,得到第一个节点 f
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果数组该位置为空,
            //用一次CAS操作将这个新值放入其中即可,这个put操作差不多就结束了,可以拉到最后面了
            //          如果 CAS 失败,那就是有并发操作,进到下一个循环就好了
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容
        else if ((fh = ) == MOVED)
            // 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了
            tab = helpTransfer(tab, f);

        else { // 到这里就是说,f 是该位置的头结点,而且不为空

            V oldVal = null;
            // 数组首节点加锁处理
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表
                        // 用于累加,记录链表的长度
                        binCount = 1;
                        // 遍历链表
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了
                            if ( == hash &&
                                ((ek = ) == key ||
                                 (ek != null && (ek)))) {
                                oldVal = ;
                                if (!onlyIfAbsent)
                                     = value;
                                break;
                            }
                            // 到了链表的最末端,将这个新值放到链表的最后面
                            Node<K,V> pred = e;
                            if ((e = ) == null) {
                                 = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) { // 红黑树
                        Node<K,V> p;
                        binCount = 2;
                        // 调用红黑树的插值方法插入新节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = ;
                            if (!onlyIfAbsent)
                                 = value;
                        }
                    }
                }
            }

            if (binCount != 0) {
                // 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8
                if (binCount >= TREEIFY_THRESHOLD)
                    // 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换,
                    // 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树
                    //    具体源码我们就不看了,扩容部分后面说
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 
    addCount(1L, binCount);
    return null;
}

初始化数组:

 initTable():并发问题是通过CAS操控sizeCtl变量实现的

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null ||  == 0) {
        // sizeCtl小于0,说明正在被其他线程初始化,进来的线程都会让出当前CPU执行权
        if ((sc = sizeCtl) < 0)
            (); // lost initialization race; just spin
        // CAS 一下,将 sizeCtl 设置为 -1,代表抢到了锁
        else if ((this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null ||  == 0) {
                    // DEFAULT_CAPACITY 默认初始容量是 16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 初始化数组,长度为 16 或初始化时提供的长度
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    // 将这个数组赋值给 table,table 是 volatile 的
                    table = tab = nt;
                    // 如果 n 为 16 的话,那么这里 sc = 12
                    // 其实就是 0.75 * n
                    sc = n - (n >>> 2);
                }
            } finally {
                // 设置 sizeCtl 为 sc,我们就当是 12 吧
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

 帮助数据迁移

    //将旧的数组中的元素复制到新的数组中
    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        //旧数组不为空且nextTable也不空的情况下才能复制
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            int rs = resizeStamp();
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                //cas操作保证线程安全
                if ((this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);//调用扩容方法
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

 具体扩容 

transfer()

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = , stride;

    // stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16
    // stride 可以理解为”步长“,有 n 个位置是需要进行迁移的,
    //   将这 n 个任务分为多个任务包,每个任务包有 stride 个任务
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range

    // 如果 nextTab 为 null,先进行一次初始化
    //    前面我们说了,外围会保证第一个发起迁移的线程调用此方法时,参数 nextTab 为 null
    //       之后参与迁移的线程调用此方法时,nextTab 不会为 null
    if (nextTab == null) {
        try {
            // 容量翻倍
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        // nextTable 是 ConcurrentHashMap 中的属性
        nextTable = nextTab;
        // transferIndex 也是 ConcurrentHashMap 的属性,用于控制迁移的位置
        transferIndex = n;
    }

    int nextn = ;

    // ForwardingNode 翻译过来就是正在被迁移的 Node
    // 这个构造方法会生成一个Node,key、value 和 next 都为 null,关键是 hash 为 MOVED
    // 后面我们会看到,原数组中位置 i 处的节点完成迁移工作后,
    //    就会将位置 i 处设置为这个 ForwardingNode,用来告诉其他线程该位置已经处理过了
    //    所以它其实相当于是一个标志。
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);


    // advance 指的是做完了一个位置的迁移工作,可以准备做下一个位置的了
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab

    /*
     * 下面这个 for 循环,最难理解的在前面,而要看懂它们,应该先看懂后面的,然后再倒回来看
     * 
     */

    // i 是位置索引,bound 是边界,注意是从后往前
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;

        // 下面这个 while 真的是不好理解
        // advance 为 true 表示可以进行下一个位置的迁移了
        //   简单理解结局:i 指向了 transferIndex,bound 指向了 transferIndex-stride
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;

            // 将 transferIndex 值赋给 nextIndex
            // 这里 transferIndex 一旦小于等于 0,说明原数组的所有位置都有相应的线程去处理了
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                // 看括号中的代码,nextBound 是这次迁移任务的边界,注意,是从后往前
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                // 所有的迁移操作已经完成
                nextTable = null;
                // 将新的 nextTab 赋值给 table 属性,完成迁移
                table = nextTab;
                // 重新计算 sizeCtl:n 是原数组长度,所以 sizeCtl 得出的值将是新数组长度的 0.75 倍
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }

            // 之前我们说过,sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2
            // 然后,每有一个线程参与迁移就会将 sizeCtl 加 1,
            // 这里使用 CAS 操作对 sizeCtl 进行减 1,代表做完了属于自己的任务
            if ((this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 任务结束,方法退出
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;

                // 到这里,说明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
                // 也就是说,所有的迁移任务都做完了,也就会进入到上面的 if(finishing){} 分支了
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        // 如果位置 i 处是空的,没有任何节点,那么放入刚刚初始化的 ForwardingNode ”空节点“
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        // 该位置处是一个 ForwardingNode,代表该位置已经迁移过了
        else if ((fh = ) == MOVED)
            advance = true; // already processed
        else {
            // 对数组该位置处的结点加锁,开始处理数组该位置处的迁移工作
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    // 头结点的 hash 大于 0,说明是链表的 Node 节点
                    if (fh >= 0) {
                        // 下面这一块和 Java7 中的 ConcurrentHashMap 迁移是差不多的,
                        // 需要将链表一分为二,
                        //   找到原链表中的 lastRun,然后 lastRun 及其之后的节点是一起进行迁移的
                        //   lastRun 之前的节点需要进行克隆,然后分到两个链表中
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = ; p != null; p = ) {
                            int b =  & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = ) {
                            int ph = ; K pk = ; V pv = ;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 其中的一个链表放在新数组的位置 i
                        setTabAt(nextTab, i, ln);
                        // 另一个链表放在新数组的位置 i+n
                        setTabAt(nextTab, i + n, hn);
                        // 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
                        //    其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
                        setTabAt(tab, i, fwd);
                        // advance 设置为 true,代表该位置已经迁移完毕
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        // 红黑树的迁移
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = ; e != null; e = ) {
                            int h = ;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, , , null, null);
                            if ((h & n) == 0) {
                                if (( = loTail) == null)
                                    lo = p;
                                else
                                     = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if (( = hiTail) == null)
                                    hi = p;
                                else
                                     = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        // 如果一分为二后,节点数少于 8,那么将红黑树转换回链表
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;

                        // 将 ln 放置在新数组的位置 i
                        setTabAt(nextTab, i, ln);
                        // 将 hn 放置在新数组的位置 i+n
                        setTabAt(nextTab, i + n, hn);
                        // 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
                        //    其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
                        setTabAt(tab, i, fwd);
                        // advance 设置为 true,代表该位置已经迁移完毕
                        advance = true;
                    }
                }
            }
        }
    }
}

链表转红黑树: treeifyBin

private final void treeifyBin(Node<K,V>[] tab, int index) {
    Node<K,V> b; int n, sc;
    if (tab != null) {
        // MIN_TREEIFY_CAPACITY 为 64
        // 所以,如果数组长度小于 64 的时候,其实也就是 32 或者 16 或者更小的时候,会进行数组扩容
        if ((n = ) < MIN_TREEIFY_CAPACITY)
            // 后面我们再详细分析这个方法
            tryPresize(n << 1);
        // b 是头结点
        else if ((b = tabAt(tab, index)) != null &&  >= 0) {
            // 加锁
            synchronized (b) {

                if (tabAt(tab, index) == b) {
                    // 下面就是遍历链表,建立一颗红黑树
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = ) {
                        TreeNode<K,V> p =
                            new TreeNode<K,V>(, , ,
                                              null, null);
                        if (( = tl) == null)
                            hd = p;
                        else
                             = p;
                        tl = p;
                    }
                    // 将红黑树设置到数组相应位置中
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

 数据加入成功计算数组的大小

addCount()

 private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        //更新baseCount,table的数量,counterCells表示元素个数的变化  
        if ((as = counterCells) != null ||
            !(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            //如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count  
            if (as == null || (m =  - 1) < 0 ||
                (a = as[() & m]) == null ||
                !(uncontended =
                  (a, CELLVALUE, v = , v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        //是否需要进行扩容
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = ) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if ((this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                else if ((this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);//具体扩容
                s = sumCount();
            }
        }
    }

获取数据

get()

  1. 计算 hash 值
  2. 根据 hash 值找到数组对应位置: (n - 1) & h
  3. 根据该位置处结点性质进行相应查找
    • 如果该位置为 null,那么直接返回 null 就可以了
    • 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可
    • 如果该位置节点的 hash 值小于 0,说明正在扩容,或者是红黑树,后面我们再介绍 find 方法
    • 如果以上 3 条都不满足,那就是链表,进行遍历比对即可

 

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(());
    if ((tab = table) != null && (n = ) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 判断头结点是否就是我们需要的节点
        if ((eh = ) == h) {
            if ((ek = ) == key || (ek != null && (ek)))
                return ;
        }
        // 如果头结点的 hash 小于 0,说明 正在扩容,或者该位置是红黑树
        else if (eh < 0)
            // 参考 (int h, Object k) 和 (int h, Object k)
            return (p = (h, key)) != null ?  : null;

        // 遍历链表
        while ((e = ) != null) {
            if ( == h &&
                ((ek = ) == key || (ek != null && (ek))))
                return ;
        }
    }
    return null;
}

总结:其中扩容的部分还有些不是很烂,还是需要记录并多看几次,看的多了就理解了当时大神的设计理念,路漫漫其修远兮,吾将上下而求索...