【相机与图像】1. 相机模型的介绍:内参、外参、畸变参数

时间:2025-03-24 11:33:56
通过上面的公式,可得以下转换关系
u = α f Z c X c + c x                 u = f x X c Z c + c x v = β f Z c Y c + c y                   v = f y Y c Z c + c y \begin{aligned} u &=\alpha\frac{f}{Z_c}X_c+c_x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,u =f_x\frac{X_c}{Z_c} +c_x\\ v &=\beta\frac{f}{Z_c}Y_c+c_y\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,v =f_y\frac{Y_c}{Z_c} +c_y \end{aligned} uv=αZcfXc+cxu=fxZcXc+cx=βZcfYc+cyv=fyZcYc+cy可以发现,当相机硬件固定下来, f x 、 f y 、 c x 、 c y f_x、f_y、c_x、c_y fxfycxcy 也就固定下来了。此时 u u u X c X_c Xc v v v Y c Y_c Yc 的变化并不成正比,因为还存在 Z c Z_c Zc的变量。
为了公式更好的转换和表达,引入了齐次坐标(在原有的坐标维度额外补充1维,数值为1),在这里像素的齐次坐标为 P ~ u v \tilde{P}_{uv} P~uv