大数据【三】YARN集群部署

时间:2022-01-10 06:03:17

一  概述

YARN是一个资源管理、任务调度的框架,采用master/slave架构,主要包含三大模块:ResourceManager(RM)、NodeManager(NM)、ApplicationMaster(AM)。

>ResourceManager负责所有资源的监控、分配和管理,运行在主节点;

>NodeManager负责每一个节点的维护,运行在从节点;

>ApplicationMaster负责每一个具体应用程序的调度和协调,只有在有任务正在执行时存在。

对于所有的applications,RM拥有绝对的控制权和对资源的分配权。而每个AM则会和RM协商资源,同时和NodeManager通信来执行和监控task。

二  运行流程

1‘  client向RM提交应用程序,其中包括启动该应用的ApplicationMaster的必须信息,例如ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。

2’  ResourceManager启动一个container用于运行ApplicationMaster。

3‘  启动中的ApplicationMaster向ResourceManager注册自己,启动成功后与RM保持心跳。

4’  ApplicationMaster向ResourceManager发送请求,申请相应数目的container。

5‘  ResourceManager返回ApplicationMaster的申请的containers信息。申请成功的container,由ApplicationMaster进行初始化。container的启动信息初始化后,AM与对应的NodeManager通信,要求NM启动container。AM与NM保持心跳,从而对NM上运行的任务进行监控和管理。

6’  container运行期间,ApplicationMaster对container进行监控。container通过RPC协议向对应的AM汇报自己的进度和状态等信息。

7‘  应用运行期间,client直接与AM通信获取应用的状态、进度更新等信息。

8’  应用运行结束后,ApplicationMaster向ResourceManager注销自己,并允许属于它的container被收回。

三  管理YARN集群

1‘  配置YARN集群

    >切换到master服务器上,前提是HDFS结点已经启动,方法见上一篇博客>> http://www.cnblogs.com/1996swg/p/7286136.html

    >指定YARN主节点,编辑文件“/usr/cstor/hadoop/etc/hadoop/yarn-site.xml”,将如下内容嵌入此文件里configuration标签间:

<property><name>yarn.resourcemanager.hostname</name><value>master</value></property>

<property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property>

   yarn-site.xml是YARN守护进程的配置文件。第一句配置了ResourceManager的主机名,第二句配置了节点管理器运行的附加服务为mapreduce_shuffle,只有这样才可以运行MapReduce程序。

   大数据【三】YARN集群部署

   >将配置好的YARN配置文件拷贝至slaveX、client

    命令如下: 查看子集 cat  ~/data/4/machines

          拷贝到子集 for  x  in  `cat ~/data/4/machines` ; do  echo  $x ; scp  /usr/cstor/hadoop/etc/hadoop/yarn-site.xml  $x:/usr/cstor/hadoop/etc/hadoop/  ; done;

   >确认已配置slaves文件,在master机器上查看;

   >统一启动YARN,命令   /usr/cstor/hadoop/sbin/start-yarn.sh   如图所示

    大数据【三】YARN集群部署

  >验证用  jps  命令,在其余子集上同时验证,如图所示验证成功

    大数据【三】YARN集群部署

2’  在client机上提交DistributedShell任务

      distributedshell,可以看做YARN编程中的“hello world”,主要功能是并行执行用户提供的shell命令或者shell脚本。

      -jar指定了包含ApplicationMaster的jar文件,-shell_command指定了需要被ApplicationMaster执行的Shell命令。

      在大数据【三】YARN集群部署上再打开一个client 的连接,执行:

        /usr/cstor/hadoop/bin/yarn  org.apache.hadoop.yarn.applications.distributedshell.Client  -jar   /usr/cstor/hadoop/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.7.1.jar    -shell_command  uptime

      运行结果显示:    

 17/08/05 02:51:34 INFO distributedshell.Client: Initializing Client
17/08/05 02:51:34 INFO distributedshell.Client: Running Client
17/08/05 02:51:34 INFO client.RMProxy: Connecting to ResourceManager at master/10.1.21.27:8032
17/08/05 02:51:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/08/05 02:51:34 INFO distributedshell.Client: Got Cluster metric info from ASM, numNodeManagers=3
17/08/05 02:51:34 INFO distributedshell.Client: Got Cluster node info from ASM
17/08/05 02:51:34 INFO distributedshell.Client: Got node report from ASM for, nodeId=slave1:42602, nodeAddressslave1:8042, nodeRackName/default-rack, nodeNumContainers0
17/08/05 02:51:34 INFO distributedshell.Client: Got node report from ASM for, nodeId=slave2:57070, nodeAddressslave2:8042, nodeRackName/default-rack, nodeNumContainers0
17/08/05 02:51:34 INFO distributedshell.Client: Got node report from ASM for, nodeId=slave3:38580, nodeAddressslave3:8042, nodeRackName/default-rack, nodeNumContainers0
17/08/05 02:51:34 INFO distributedshell.Client: Queue info, queueName=default, queueCurrentCapacity=0.0, queueMaxCapacity=1.0, queueApplicationCount=0, queueChildQueueCount=0
17/08/05 02:51:34 INFO distributedshell.Client: User ACL Info for Queue, queueName=root, userAcl=SUBMIT_APPLICATIONS
17/08/05 02:51:34 INFO distributedshell.Client: User ACL Info for Queue, queueName=root, userAcl=ADMINISTER_QUEUE
17/08/05 02:51:34 INFO distributedshell.Client: User ACL Info for Queue, queueName=default, userAcl=SUBMIT_APPLICATIONS
17/08/05 02:51:34 INFO distributedshell.Client: User ACL Info for Queue, queueName=default, userAcl=ADMINISTER_QUEUE
17/08/05 02:51:35 INFO distributedshell.Client: Max mem capabililty of resources in this cluster 8192
17/08/05 02:51:35 INFO distributedshell.Client: Max virtual cores capabililty of resources in this cluster 32
17/08/05 02:51:35 INFO distributedshell.Client: Copy App Master jar from local filesystem and add to local environment
17/08/05 02:51:35 INFO distributedshell.Client: Set the environment for the application master
17/08/05 02:51:35 INFO distributedshell.Client: Setting up app master command
17/08/05 02:51:35 INFO distributedshell.Client: Completed setting up app master command {{JAVA_HOME}}/bin/java -Xmx10m org.apache.hadoop.yarn.applications.distributedshell.ApplicationMaster --container_memory 10 --container_vcores 1 --num_containers 1 --priority 0 1><LOG_DIR>/AppMaster.stdout 2><LOG_DIR>/AppMaster.stderr
17/08/05 02:51:35 INFO distributedshell.Client: Submitting application to ASM
17/08/05 02:51:36 INFO impl.YarnClientImpl: Submitted application application_1501872322130_0001
17/08/05 02:51:37 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=N/A, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=ACCEPTED, distributedFinalState=UNDEFINED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:38 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=N/A, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=ACCEPTED, distributedFinalState=UNDEFINED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:39 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=N/A, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=ACCEPTED, distributedFinalState=UNDEFINED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:40 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=slave2/10.1.32.41, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:41 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=slave2/10.1.32.41, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:42 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=slave2/10.1.32.41, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:43 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=slave2/10.1.32.41, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:44 INFO distributedshell.Client: Got application report from ASM for, appId=1, clientToAMToken=null, appDiagnostics=, appMasterHost=slave2/10.1.32.41, appQueue=default, appMasterRpcPort=-1, appStartTime=1501872695990, yarnAppState=FINISHED, distributedFinalState=SUCCEEDED, appTrackingUrl=http://master:8088/proxy/application_1501872322130_0001/, appUser=root
17/08/05 02:51:44 INFO distributedshell.Client: Application has completed successfully. Breaking monitoring loop
17/08/05 02:51:44 INFO distributedshell.Client: Application completed successfully

3’  在client机上提交MapReduce任务

      (1)指定在YARN上运行MapReduce任务

          首先,在master机上,将文件“/usr/cstor/hadoop/etc/hadoop/mapred-site.xml. template”重命名为“/usr/cstor/hadoop/etc/hadoop/mapred-site.xml”;

              大数据【三】YARN集群部署

          接着,编辑此文件并将如下内容嵌入此文件的configuration标签间:

                <property><name>mapreduce.framework.name</name><value>yarn</value></property>

              大数据【三】YARN集群部署

          最后,将master机的“/usr/local/hadoop/etc/hadoop/mapred-site.xml”文件拷贝到slaveX与client,(拷贝方法同上YARN配置拷贝方法),重新启动集群。

              大数据【三】YARN集群部署

      (2)在client端提交PI Estimator任务

          首先进入Hadoop安装目录:/usr/cstor/hadoop/,然后提交PI Estimator任务。

          命令最后两个两个参数的含义:第一个参数是指要运行map的次数,这里是2次;第二个参数是指每个map任务,取样的个数;而两数相乘即为总的取样数。Pi Estimator使用Monte Carlo方法计算Pi值的。

          bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar pi 2 10

          显示结果如下:

 Number of Maps  = 2
Samples per Map = 10
17/08/05 03:03:30 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
17/08/05 03:03:31 INFO client.RMProxy: Connecting to ResourceManager at master/10.1.21.27:8032
17/08/05 03:03:32 INFO input.FileInputFormat: Total input paths to process : 2
17/08/05 03:03:32 INFO mapreduce.JobSubmitter: number of splits:2
17/08/05 03:03:32 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1501872322130_0002
17/08/05 03:03:32 INFO impl.YarnClientImpl: Submitted application application_1501872322130_0002
17/08/05 03:03:32 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1501872322130_0002/
17/08/05 03:03:32 INFO mapreduce.Job: Running job: job_1501872322130_0002
17/08/05 03:03:39 INFO mapreduce.Job: Job job_1501872322130_0002 running in uber mode : false
17/08/05 03:03:39 INFO mapreduce.Job: map 0% reduce 0%
17/08/05 03:03:45 INFO mapreduce.Job: map 50% reduce 0%
17/08/05 03:03:46 INFO mapreduce.Job: map 100% reduce 0%
17/08/05 03:03:52 INFO mapreduce.Job: map 100% reduce 100%
17/08/05 03:03:52 INFO mapreduce.Job: Job job_1501872322130_0002 completed successfully
17/08/05 03:03:52 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=50
FILE: Number of bytes written=347208
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=522
HDFS: Number of bytes written=215
HDFS: Number of read operations=11
HDFS: Number of large read operations=0
HDFS: Number of write operations=3
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=7932
Total time spent by all reduces in occupied slots (ms)=3443
Total time spent by all map tasks (ms)=7932
Total time spent by all reduce tasks (ms)=3443
Total vcore-seconds taken by all map tasks=7932
Total vcore-seconds taken by all reduce tasks=3443
Total megabyte-seconds taken by all map tasks=8122368
Total megabyte-seconds taken by all reduce tasks=3525632
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=36
Map output materialized bytes=56
Input split bytes=286
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=56
Reduce input records=4
Reduce output records=0
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=347
CPU time spent (ms)=2630
Physical memory (bytes) snapshot=683196416
Virtual memory (bytes) snapshot=2444324864
Total committed heap usage (bytes)=603979776
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=236
File Output Format Counters
Bytes Written=97
Job Finished in 20.592 seconds
Estimated value of Pi is 3.80000000000000000000

小结:

    关于YARN框架的学习不需多深入,只需搭建好配置环境,以供下面MapReduce的学习。

    在新版Hadoop中,Yarn作为一个资源管理调度框架,是Hadoop下MapReduce程序运行的生存环境。其实MapRuduce除了可以运行Yarn框架下,也可以运行在诸如Mesos,Corona之类的调度框架上,使用不同的调度框架,需要针对Hadoop做不同的适配。

    

大数据【三】YARN集群部署的更多相关文章

  1. 大数据学习——Kafka集群部署

    1下载安装包 2解压安装包 -0.9.0.1.tgz -0.9.0.1 kafka 3修改配置文件 cp server.properties  server.properties.bak # Lice ...

  2. 大数据学习——yarn集群启动

    启动yarn命令: start-yarn.sh 验证是否启动成功 jps查看进程 http://192.168.74.100:8088页面 关闭 stop-yarn.sh

  3. ElasticSearch 深入理解 三:集群部署设计

    ElasticSearch 深入理解 三:集群部署设计 ElasticSearch从名字中也可以知道,它的Elastic跟Search是同等重要的,甚至以Elastic为主要导向. Elastic即可 ...

  4. CDH构建大数据平台-配置集群的Kerberos认证安全

     CDH构建大数据平台-配置集群的Kerberos认证安全 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 当平台用户使用量少的时候我们可能不会在一集群安全功能的缺失,因为用户少,团 ...

  5. 朝花夕拾之--大数据平台CDH集群离线搭建

    body { border: 1px solid #ddd; outline: 1300px solid #fff; margin: 16px auto; } body .markdown-body ...

  6. 大数据测试之hadoop集群配置和测试

    大数据测试之hadoop集群配置和测试   一.准备(所有节点都需要做):系统:Ubuntu12.04java版本:JDK1.7SSH(ubuntu自带)三台在同一ip段的机器,设置为静态IP机器分配 ...

  7. Ha-Federation-hdfs &plus;Yarn集群部署方式

    经过一下午的尝试,终于把这个集群的搭建好了,搭完感觉也没有太大的必要,就当是学习了吧,为之后搭建真实环境做基础. 以下搭建的是一个Ha-Federation-hdfs+Yarn的集群部署. 首先讲一下 ...

  8. Laxcus大数据管理系统单机集群版

    Laxcus大数据管理系统是我们Laxcus大数据实验室历时5年,全体系全功能设计研发的大数据产品,目前的最新版本是2.1版本.从三年前的1.0版本开始,Laxcus大数据系统投入到多个大数据和云计算 ...

  9. Laxcus大数据操作系统单机集群版

    Laxcus大数据管理系统是我们Laxcus大数据实验室历时5年,全体系全功能设计研发的大数据产品,目前的最新版本是2.1版本.从三年前的1.0版本开始,Laxcus大数据系统投入到多个大数据和云计算 ...

随机推荐

  1. dbutils基本使用

    dbutils的查询,主要用到的是query方法,增加,修改和删除都是update方法,update方法就不讲了 只要创建ResultSetHandler接口不同的实现类对象就可以得到想要的查询结果, ...

  2. ov5640摄像头设备驱动

    http://www.cnblogs.com/firege/p/5806121.html  (驱动大神) http://blog.csdn.net/yanbixing123/article/detai ...

  3. Android JavaMail

    一.简介 JavaMail API提供了一种与平台无关和协议独立的框架来构建邮件和消息应用程序. JavaMail API提供了一组抽象类定义构成一个邮件系统的对象.它是阅读,撰写和发送电子信息的可选 ...

  4. error&colon; command &&num;39&semi;gcc&&num;39&semi; failed with exit status 1 的解决办法

    yum install gcc python-devel 之前yum install gcc* 了 所以没成功. wget http://prdownloads.sourceforge.net/doc ...

  5. c 递归函数浅析

    所谓递归,简而言之就是应用程序自身调用自身,以实现层次数据结构的查询和访问. 递归的使用可以使代码更简洁清晰,可读性更好(对于初学者到不见得),但由于递归需要系统堆栈,所以空间消耗要比非递归代码要大很 ...

  6. 【XSY3154】入门多项式 高斯消元

    题目大意 给你一个 \(n\times n\)的矩阵 \(A\),求次数最小且最高次项为 \(1\) 的多项式 \(F(x)\),满足 \(F(A)=0\). 所有操作都对 \(p\) 取模. \(n ...

  7. Netty 源码中对 Redis 协议的实现

    原文地址: haifeiWu的博客 博客地址:www.hchstudio.cn 欢迎转载,转载请注明作者及出处,谢谢! 近期一直在做网络协议相关的工作,所以博客也就与之相关的比较多,今天楼主结合 Re ...

  8. &period;NET基础 (16)事件

    事件1 请解释事件的基本使用方法2 事件和委托有何联系3 如何设计一个带有很多事件的类型4 用代码表示如下情景:猫叫.老鼠逃跑.主人惊醒 事件1 请解释事件的基本使用方法 事件时一种使对象或类能够提供 ...

  9. UVA 1103 How Many O&&num;39&semi;s&quest;

    题目链接:UVA-11038 题意为给定n和m,求n和m之间(包含)的所有数包含的0的个数. 思路是,用cal(x)表示小于等于x的数包含的0的个数.则答案为cal(n)-cal(m-1). 再把求c ...

  10. 前端渲染模板(一):Thymeleaf

    一.使用 本篇文章将以SpringBoot为框架来介绍Thymeleaf的用法. 1 资源文件的约定目录结构  Maven的资源文件目录:/src/java/resources spring-boot ...