RNN循环神经网络python实现

时间:2025-03-13 16:15:33
import collections import math import re import random import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2l def read_txt(): # 读取文本数据 with open('./A Study in ', 'r', encoding='utf-8') as f: # 读取每一行 lines = f.readlines() # 将不是英文字符的转换为空格,全部变为小写字符返回 return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines] def tokenize(lines, token='word'): # 将文本以空格进行分割成词 if token == 'word': return [line.split() for line in lines] # 将文本分割成字符 elif token == 'char': return [list(line) for line in lines] else: print('错误:未知令牌类型:' + token) def count_corpus(tokens): # 如果tokens长度为0或tokens[0]是list if len(tokens) == 0 or isinstance(tokens[0], list): # 将[[,,,],[,,,]]多层结构变为一层结构[,,,,] tokens = [token for line in tokens for token in line] # 统计可迭代对象中元素出现的次数,并返回一个字典(key-value)key 表示元素,value 表示各元素 key 出现的次数 return collections.Counter(tokens) # idx_to_token 是一个list 由token作为元素构成['<unk>', ' ', 'e', 't', 'a', 'o', 'h', 'n', 'i', 's', 'r', 'd', 'l', 'u', 'f', 'w', 'g', 'm', 'y', 'c', 'p', 'b', 'k', 'v', 'j', 'x', 'z', 'q'] # token_freqs 是一个list 由token和该token出现的次数构成的元组作为元素构成[(' ', 94824), ('e', 54804), ('t', 38742), ('a', 33172), ('o', 30656), ('h', 29047), ('n', 28667), ('i', 28093), ('s', 27922), ('r', 26121), ('d', 20394), ('l', 17755), ('u', 12267), ('f', 11033), ('w', 10033), ('g', 9837), ('m', 9258), ('y', 9251), ('c', 8872), ('p', 6998), ('b', 6620), ('k', 4817), ('v', 3574), ('j', 500), ('x', 372), ('z', 308), ('q', 285)] # token_to_idx 是一个dict 由token作为key token在idx_to_token的索引作为value构成{' ': 1, '<unk>': 0, 'a': 4, 'b': 21, 'c': 19, 'd': 11, 'e': 2, 'f': 14, 'g': 16, 'h': 6, 'i': 8, 'j': 24, 'k': 22, 'l': 12, 'm': 17, 'n': 7, 'o': 5, 'p': 20, 'q': 27, 'r': 10, 's': 9, 't': 3, 'u': 13, 'v': 23, 'w': 15, 'x': 25, 'y': 18, 'z': 26} class Vocab: def __init__(self, tokens=None, min_freq=0, reserved_tokens=None): # 处理特殊情况 if tokens is None: tokens = [] # 处理特殊情况 if reserved_tokens is None: reserved_tokens = [] # counter为一个字典(key-value)key 表示元素,value 表示各元素 key 出现的次数 counter = count_corpus(tokens) # 排序 # iterable:待排序的序列() # key:排序规则lambda x: x[1]从小到大 # reverse:指定排序的方式,默认值False,即升序排列,这是True也就是降序 self.token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True) # 初始化 self.unk, uniq_tokens = 0, ['<unk>'] + reserved_tokens # 初始化 token_freqs中 key不在 uniq_tokens中 且 value大于min_freq 返回token放入uniq_tokens uniq_tokens += [ token for token, freq in self.token_freqs if freq >= min_freq and token not in uniq_tokens] # 初始化 self.idx_to_token, self.token_to_idx = [], dict() # 赋值 for token in uniq_tokens: self.idx_to_token.append(token) self.token_to_idx[token] = len(self.idx_to_token) - 1 def __len__(self): return len(self.idx_to_token) def __getitem__(self, tokens): if not isinstance(tokens, (list, tuple)): return self.token_to_idx.get(tokens, self.unk) return [self.__getitem__(token) for token in tokens] def to_tokens(self, indices): if not isinstance(indices, (list, tuple)): return self.idx_to_token[indices] return [self.idx_to_token[index] for index in indices] def load_corpus_time_machine(max_tokens=-1): # 将文本处理成行 lines = read_txt() # print(lines) # 将行tokens化 tokens = tokenize(lines, 'char') # print(tokens) # 构建字典表 vocab = Vocab(tokens) # vocab的格式为{list:524222}[5, 7, 2, 5, 7, 2, 8, 3, ......, 1, 18, 5, 13] #print(vocab) corpus = [vocab[token] for line in tokens for token in line] if max_tokens > 0: corpus = corpus[:max_tokens] return corpus, vocab # 随机地生成一个小批量数据的特征和标签以供读取。 在随机采样中,每个样本都是在原始的长序列上任意捕获的子序列 def seq_data_iter_random(corpus, batch_size, num_steps): """使用随机抽样生成一个小批量子序列。""" corpus = corpus[random.randint(0, num_steps - 1):] num_subseqs = (len(corpus) - 1) // num_steps initial_indices = list(range(0, num_subseqs * num_steps, num_steps)) random.shuffle(initial_indices) def data(pos): return corpus[pos:pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): initial_indices_per_batch = initial_indices[i:i + batch_size] X = [data(j) for j in initial_indices_per_batch] Y = [data(j + 1) for j in initial_indices_per_batch] yield torch.tensor(X), torch.tensor(Y) # 保证两个相邻的小批量中的子序列在原始序列上也是相邻的 def seq_data_iter_sequential(corpus, batch_size, num_steps): """使用顺序分区生成一个小批量子序列。""" offset = random.randint(0, num_steps) num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size Xs = torch.tensor(corpus[offset:offset + num_tokens]) Ys = torch.tensor(corpus[offset + 1:offset + 1 + num_tokens]) Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1) num_batches = Xs.shape[1] // num_steps for i in range(0, num_steps * num_batches, num_steps): X = Xs[:, i:i + num_steps] Y = Ys[:, i:i + num_steps] yield X, Y class SeqDataLoader: """加载序列数据的迭代器。""" def __init__(self, batch_size, num_steps, use_random_iter, max_tokens): if use_random_iter: self.data_iter_fn = seq_data_iter_random else: self.data_iter_fn = seq_data_iter_sequential self.corpus, self.vocab = load_corpus_time_machine(max_tokens) self.batch_size, self.num_steps = batch_size, num_steps def __iter__(self): return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps) def load_data_time_machine(batch_size, num_steps, use_random_iter=False, max_tokens=10000): """返回时光机器数据集的迭代器和词汇表。""" data_iter = SeqDataLoader(batch_size, num_steps, use_random_iter, max_tokens) return data_iter, data_iter.vocab # 初始化模型参数 def get_params(vocab_size, num_hiddens, device): # 输入等于输出等于字典大小 num_inputs = num_outputs = vocab_size # 均值为0方差为1的随机张量*0.01 def normal(shape): return torch.randn(size=shape, device=device) * 0.01 # 输入到隐藏层边缘的W W_xh = normal((num_inputs, num_hiddens)) # 隐藏层的W W_hh = normal((num_hiddens, num_hiddens)) b_h = torch.zeros(num_hiddens, device=device) # 隐藏层到输出的W W_hq = normal((num_hiddens, num_outputs)) b_q = torch.zeros(num_outputs, device=device) params = [W_xh, W_hh, b_h, W_hq, b_q] for param in params: param.requires_grad_(True) return params # 初始化隐藏状态 def init_rnn_state(batch_size, num_hiddens, device): # 批量大小,隐藏层大小的全0张量 return (torch.zeros((batch_size, num_hiddens), device=device),) # 计算输出 def rnn(inputs, state, params): W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: # 激活函数是tanh H为初始化隐藏状态 H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h) Y = torch.mm(H, W_hq) + b_q outputs.append(Y) # H为当前隐藏状态 return torch.cat(outputs, dim=0), (H,) class RNNModelScratch: """从零开始实现的循环神经网络模型""" def __init__(self, vocab_size, num_hiddens, device, get_params, init_state, forward_fn): self.vocab_size, self.num_hiddens = vocab_size, num_hiddens self.params = get_params(vocab_size, num_hiddens, device) self.init_state, self.forward_fn = init_state, forward_fn def __call__(self, X, state): X = F.one_hot(X.T, self.vocab_size).type(torch.float32) return self.forward_fn(X, state, self.params) def begin_state(self, batch_size, device): return self.init_state(batch_size, self.num_hiddens, device) # 推理测试 def predict_ch8(prefix, num_preds, net, vocab, device): """在`prefix`后面生成新字符。""" state = net.begin_state(batch_size=1, device=device) outputs = [vocab[prefix[0]]] get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape( (1, 1)) for y in prefix[1:]: _, state = net(get_input(), state) outputs.append(vocab[y]) for _ in range(num_preds): y, state = net(get_input(), state) outputs.append(int(y.argmax(dim=1).reshape(1))) return ''.join([vocab.idx_to_token[i] for i in outputs]) # 梯度剪裁 def grad_clipping(net, theta): """裁剪梯度。""" if isinstance(net, nn.Module): params = [p for p in net.parameters() if p.requires_grad] else: params = net.params norm = torch.sqrt(sum(torch.sum((p.grad**2)) for p in params)) if norm > theta: for param in params: param.grad[:] *= theta / norm # 训练函数 def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter): """训练模型一个迭代周期(定义见第8章)。""" state = None metric = d2l.Accumulator(2) for X, Y in train_iter: if state is None or use_random_iter: state = net.begin_state(batch_size=X.shape[0], device=device) else: if isinstance(net, nn.Module) and not isinstance(state, tuple): state.detach_() else: for s in state: s.detach_() y = Y.T.reshape(-1) X, y = X.to(device), y.to(device) y_hat, state = net(X, state) l = loss(y_hat, y.long()).mean() if isinstance(updater, torch.optim.Optimizer): updater.zero_grad() l.backward() grad_clipping(net, 1) updater.step() else: l.backward() grad_clipping(net, 1) updater(batch_size=1) metric.add(l * y.numel(), y.numel()) return math.exp(metric[0] / metric[1]) def train_ch8(net, train_iter, vocab, lr, num_epochs, device, use_random_iter=False): """训练模型(定义见第8章)。""" loss = nn.CrossEntropyLoss() if isinstance(net, nn.Module): updater = torch.optim.SGD(net.parameters(), lr) else: updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size) predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device) for epoch in range(num_epochs): ppl = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter) if (epoch + 1) % 10 == 0: print(predict('But')) print(f'困惑度 {ppl:.1f}, {str(device)}') print(predict('But')) # 批量大小为32 时序序列的长度为35 隐藏层大小512 batch_size, num_steps, num_hiddens = 32, 35, 512 # 获取迭代数据和字典 train_iter, vocab = load_data_time_machine(batch_size, num_steps) # 定义网络 net = RNNModelScratch(len(vocab), num_hiddens, torch.device('cpu'), get_params, init_rnn_state, rnn) # 训练500轮 学习率为1 num_epochs, lr = 50, 1 # 训练 train_ch8(net, train_iter, vocab, lr, num_epochs, torch.device('cpu'), use_random_iter=True)