Semaphore(信号量)是JUC包中比较常用到的一个类,它是AQS共享模式的一个应用,可以允许多个线程同时对共享资源进行操作,并且可以有效的控制并发数,利用它可以很好的实现流量控制。Semaphore提供了一个许可证的概念,可以把这个许可证看作公共汽车车票,只有成功获取车票的人才能够上车,并且车票是有一定数量的,不可能毫无限制的发下去,这样就会导致公交车超载。所以当车票发完的时候(公交车以满载),其他人就只能等下一趟车了。如果中途有人下车,那么他的位置将会空闲出来,因此如果这时其他人想要上车的话就又可以获得车票了。利用Semaphore可以实现各种池,我们在本篇末尾将会动手写一个简易的数据库连接池。首先我们来看一下Semaphore的构造器。
1
2
3
4
5
6
7
8
9
|
//构造器1
public Semaphore( int permits) {
sync = new NonfairSync(permits);
}
//构造器2
public Semaphore( int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
|
Semaphore提供了两个带参构造器,没有提供无参构造器。这两个构造器都必须传入一个初始的许可证数量,使用构造器1构造出来的信号量在获取许可证时会采用非公平方式获取,使用构造器2可以通过参数指定获取许可证的方式(公平or非公平)。Semaphore主要对外提供了两类API,获取许可证和释放许可证,默认的是获取和释放一个许可证,也可以传入参数来同时获取和释放多个许可证。在本篇中我们只讲每次获取和释放一个许可证的情况。
1.获取许可证
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
//获取一个许可证(响应中断)
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly( 1 );
}
//获取一个许可证(不响应中断)
public void acquireUninterruptibly() {
sync.acquireShared( 1 );
}
//尝试获取许可证(非公平获取)
public boolean tryAcquire() {
return sync.nonfairTryAcquireShared( 1 ) >= 0 ;
}
//尝试获取许可证(定时获取)
public boolean tryAcquire( long timeout, TimeUnit unit) throws InterruptedException {
return sync.tryAcquireSharedNanos( 1 , unit.toNanos(timeout));
}
|
上面的API是Semaphore提供的默认获取许可证操作。每次只获取一个许可证,这也是现实生活中较常遇到的情况。除了直接获取还提供了尝试获取,直接获取操作在失败之后可能会阻塞线程,而尝试获取则不会。另外还需注意的是tryAcquire方法是使用非公平方式尝试获取的。在平时我们比较常用到的是acquire方法去获取许可证。下面我们就来看看它是怎样获取的。可以看到acquire方法里面直接就是调用sync.acquireSharedInterruptibly(1),这个方法是AQS里面的方法,我们在讲AQS源码系列文章的时候曾经讲过,现在我们再来回顾一下。
1
2
3
4
5
6
7
8
9
10
11
12
|
//以可中断模式获取锁(共享模式)
public final void acquireSharedInterruptibly( int arg) throws InterruptedException {
//首先判断线程是否中断, 如果是则抛出异常
if (Thread.interrupted()) {
throw new InterruptedException();
}
//1.尝试去获取锁
if (tryAcquireShared(arg) < 0 ) {
//2. 如果获取失败则进人该方法
doAcquireSharedInterruptibly(arg);
}
}
|
acquireSharedInterruptibly方法首先就是去调用tryAcquireShared方法去尝试获取,tryAcquireShared在AQS里面是抽象方法,FairSync和NonfairSync这两个派生类实现了该方法的逻辑。FairSync实现的是公平获取的逻辑,而NonfairSync实现的非公平获取的逻辑。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
abstract static class Sync extends AbstractQueuedSynchronizer {
//非公平方式尝试获取
final int nonfairTryAcquireShared( int acquires) {
for (;;) {
//获取可用许可证
int available = getState();
//获取剩余许可证
int remaining = available - acquires;
//1.如果remaining小于0则直接返回remaining
//2.如果remaining大于0则先更新同步状态再返回remaining
if (remaining < 0 || compareAndSetState(available, remaining)) {
return remaining;
}
}
}
}
//非公平同步器
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L;
NonfairSync( int permits) {
super (permits);
}
//尝试获取许可证
protected int tryAcquireShared( int acquires) {
return nonfairTryAcquireShared(acquires);
}
}
//公平同步器
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L;
FairSync( int permits) {
super (permits);
}
//尝试获取许可证
protected int tryAcquireShared( int acquires) {
for (;;) {
//判断同步队列前面有没有人排队
if (hasQueuedPredecessors()) {
//如果有的话就直接返回-1,表示尝试获取失败
return - 1 ;
}
//获取可用许可证
int available = getState();
//获取剩余许可证
int remaining = available - acquires;
//1.如果remaining小于0则直接返回remaining
//2.如果remaining大于0则先更新同步状态再返回remaining
if (remaining < 0 || compareAndSetState(available, remaining)) {
return remaining;
}
}
}
}
|
这里需要注意的是NonfairSync的tryAcquireShared方法直接调用的是nonfairTryAcquireShared方法,这个方法是在父类Sync里面的。非公平获取锁的逻辑是先取出当前同步状态(同步状态表示许可证个数),将当前同步状态减去参入的参数,如果结果不小于0的话证明还有可用的许可证,那么就直接使用CAS操作更新同步状态的值,最后不管结果是否小于0都会返回该结果值。这里我们要了解tryAcquireShared方法返回值的含义,返回负数表示获取失败,零表示当前线程获取成功但后续线程不能再获取,正数表示当前线程获取成功并且后续线程也能够获取。我们再来看acquireSharedInterruptibly方法的代码。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
//以可中断模式获取锁(共享模式)
public final void acquireSharedInterruptibly( int arg) throws InterruptedException {
//首先判断线程是否中断, 如果是则抛出异常
if (Thread.interrupted()) {
throw new InterruptedException();
}
//1.尝试去获取锁
//负数:表示获取失败
//零值:表示当前线程获取成功, 但是后继线程不能再获取了
//正数:表示当前线程获取成功, 并且后继线程同样可以获取成功
if (tryAcquireShared(arg) < 0 ) {
//2. 如果获取失败则进人该方法
doAcquireSharedInterruptibly(arg);
}
}
|
如果返回的remaining小于0的话就代表获取失败,因此tryAcquireShared(arg) < 0就为true,所以接下来就会调用doAcquireSharedInterruptibly方法,这个方法我们在讲AQS的时候讲过,它会将当前线程包装成结点放入同步队列尾部,并且有可能挂起线程。这也是当remaining小于0时线程会排队阻塞的原因。而如果返回的remaining>=0的话就代表当前线程获取成功,因此tryAcquireShared(arg) < 0就为flase,所以就不会再去调用doAcquireSharedInterruptibly方法阻塞当前线程了。以上是非公平获取的整个逻辑,而公平获取时仅仅是在此之前先去调用hasQueuedPredecessors方法判断同步队列是否有人在排队,如果有的话就直接return -1表示获取失败,否则才继续执行下面和非公平获取一样的步骤。
2.释放许可证
1
2
3
4
|
//释放一个许可证
public void release() {
sync.releaseShared( 1 );
}
|
调用release方法是释放一个许可证,它的操作很简单,就调用了AQS的releaseShared方法,我们来看看这个方法。
1
2
3
4
5
6
7
8
9
10
|
//释放锁的操作(共享模式)
public final boolean releaseShared( int arg) {
//1.尝试去释放锁
if (tryReleaseShared(arg)) {
//2.如果释放成功就唤醒其他线程
doReleaseShared();
return true ;
}
return false ;
}
|
AQS的releaseShared方法首先调用tryReleaseShared方法尝试释放锁,这个方法的实现逻辑在子类Sync里面。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
abstract static class Sync extends AbstractQueuedSynchronizer {
...
//尝试释放操作
protected final boolean tryReleaseShared( int releases) {
for (;;) {
//获取当前同步状态
int current = getState();
//将当前同步状态加上传入的参数
int next = current + releases;
//如果相加结果小于当前同步状态的话就报错
if (next < current) {
throw new Error( "Maximum permit count exceeded" );
}
//以CAS方式更新同步状态的值, 更新成功则返回true, 否则继续循环
if (compareAndSetState(current, next)) {
return true ;
}
}
}
...
}
|
可以看到tryReleaseShared方法里面采用for循环进行自旋,首先获取同步状态,将同步状态加上传入的参数,然后以CAS方式更新同步状态,更新成功就返回true并跳出方法,否则就继续循环直到成功为止,这就是Semaphore释放许可证的流程。
3.动手写个连接池
Semaphore代码并没有很复杂,常用的操作就是获取和释放一个许可证,这些操作的实现逻辑也都比较简单,但这并不妨碍Semaphore的广泛应用。下面我们就来利用Semaphore实现一个简单的数据库连接池,通过这个例子希望读者们能更加深入的掌握Semaphore的运用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
public class ConnectPool {
//连接池大小
private int size;
//数据库连接集合
private Connect[] connects;
//连接状态标志
private boolean [] connectFlag;
//剩余可用连接数
private volatile int available;
//信号量
private Semaphore semaphore;
//构造器
public ConnectPool( int size) {
this .size = size;
this .available = size;
semaphore = new Semaphore(size, true );
connects = new Connect[size];
connectFlag = new boolean [size];
initConnects();
}
//初始化连接
private void initConnects() {
//生成指定数量的数据库连接
for ( int i = 0 ; i < this .size; i++) {
connects[i] = new Connect();
}
}
//获取数据库连接
private synchronized Connect getConnect(){
for ( int i = 0 ; i < connectFlag.length; i++) {
//遍历集合找到未使用的连接
if (!connectFlag[i]) {
//将连接设置为使用中
connectFlag[i] = true ;
//可用连接数减1
available--;
System.out.println( "【" +Thread.currentThread().getName()+ "】以获取连接 剩余连接数:" + available);
//返回连接引用
return connects[i];
}
}
return null ;
}
//获取一个连接
public Connect openConnect() throws InterruptedException {
//获取许可证
semaphore.acquire();
//获取数据库连接
return getConnect();
}
//释放一个连接
public synchronized void release(Connect connect) {
for ( int i = 0 ; i < this .size; i++) {
if (connect == connects[i]){
//将连接设置为未使用
connectFlag[i] = false ;
//可用连接数加1
available++;
System.out.println( "【" +Thread.currentThread().getName()+ "】以释放连接 剩余连接数:" + available);
//释放许可证
semaphore.release();
}
}
}
//剩余可用连接数
public int available() {
return available;
}
}
|
测试代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
public class TestThread extends Thread {
private static ConnectPool pool = new ConnectPool( 3 );
@Override
public void run() {
try {
Connect connect = pool.openConnect();
Thread.sleep( 100 ); //休息一下
pool.release(connect);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
for ( int i = 0 ; i < 10 ; i++) {
new TestThread().start();
}
}
}
|
测试结果:
我们使用一个数组来存放数据库连接的引用,在初始化连接池的时候会调用initConnects方法创建指定数量的数据库连接,并将它们的引用存放到数组中,此外还有一个相同大小的数组来记录连接是否可用。每当外部线程请求获取一个连接时,首先调用semaphore.acquire()方法获取一个许可证,然后将连接状态设置为使用中,最后返回该连接的引用。许可证的数量由构造时传入的参数决定,每调用一次semaphore.acquire()方法许可证数量减1,当数量减为0时说明已经没有连接可以使用了,这时如果其他线程再来获取就会被阻塞。每当线程释放一个连接的时候会调用semaphore.release()将许可证释放,此时许可证的总量又会增加,代表可用的连接数增加了,那么之前被阻塞的线程将会醒来继续获取连接,这时再次获取就能够成功获取连接了。测试示例中初始化了一个3个连接的连接池,我们从测试结果中可以看到,每当线程获取一个连接剩余的连接数将会减1,等到减为0时其他线程就不能再获取了,此时必须等待一个线程将连接释放之后才能继续获取。可以看到剩余连接数总是在0到3之间变动,说明我们这次的测试是成功的。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/liuyun1995/p/8474026.html