关于贪心算法(摘自hello算法)
贪心算法(greedy algorithm)是一种常见的解决优化问题的算法,其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决策,以期获得全局最优解。贪心算法简洁且高效,在许多实际问题中有着广泛的应用。
贪心算法和动态规划都常用于解决优化问题。它们之间存在一些相似之处,比如都依赖最优子结构性质,但工作原理不同。
- 动态规划会根据之前阶段的所有决策来考虑当前决策,并使用过去子问题的解来构建当前子问题的解。
- 贪心算法不会考虑过去的决策,而是一路向前地进行贪心选择,不断缩小问题范围,直至问题被解决。
贪心问题的解决流程大体可分为以下三步。
- 问题分析:梳理与理解问题特性,包括状态定义、优化目标和约束条件等。这一步在回溯和动态规划中都有涉及。
- 确定贪心策略:确定如何在每一步中做出贪心选择。这个策略能够在每一步减小问题的规模,并最终解决整个问题。
- 正确性证明:通常需要证明问题具有贪心选择性质和最优子结构。这个步骤可能需要用到数学证明,例如归纳法或反证法等。
确定贪心策略是求解问题的核心步骤,但实施起来可能并不容易,主要有以下原因。
- 不同问题的贪心策略的差异较大。对于许多问题来说,贪心策略比较浅显,我们通过一些大概的思考与尝试就能得出。而对于一些复杂问题,贪心策略可能非常隐蔽,这种情况就非常考验个人的解题经验与算法能力了。
- 某些贪心策略具有较强的迷惑性。当我们满怀信心设计好贪心策略,写出解题代码并提交运行,很可能发现部分测试样例无法通过。这是因为设计的贪心策略只是“部分正确”的,上文介绍的零钱兑换就是一个典型案例。
为了保证正确性,我们应该对贪心策略进行严谨的数学证明,通常需要用到反证法或数学归纳法。
455分发饼干
力扣题目链接
题目描述:
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i
,都有一个胃口值 g[i]
,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j
,都有一个尺寸 s[j]
。如果 s[j] >= g[i]
,我们可以将这个饼干 j
分配给孩子 i
,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1] 输出: 1 解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。 所以你应该输出1。
示例 2:
输入: g = [1,2], s = [1,2,3] 输出: 2 解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。 你拥有的饼干数量和尺寸都足以让所有孩子满足。 所以你应该输出2.
标准代码:
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
int result=0;
sort((),());
sort((),());
int index=()-1;
for(int i=()-1;i>=0;i--){
if(index>=0&&s[index]>=g[i]){
result++;
index--;
}
}
return result;
}
};
自己写的代码:
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
int result=0;
sort((),());
sort((),());
for(int i=0;i<();i++){
for(int j=0;j<();j++){
if(s[i]>=g[j]){
result++;
(()+j);
break;
}
}
}
return result;
}
376摆动序列
力扣题目链接
题目描述:
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5] 输出:6 解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8] 输出:7 解释:这个序列包含几个长度为 7 摆动序列。 其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9] 输出:2
代码:
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
int curdiff=0;
int prediff=0;
int result=1;
for(int i=0;i<()-1;i++){
curdiff=nums[i+1]-nums[i];
if(prediff>=0&&curdiff<0||prediff<=0&&curdiff>0){
result++;
prediff=curdiff;
}
}
return result;
}
};
本题注释:
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点
在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0
或者 prediff > 0 && curdiff < 0
此时就有波动就需要统计。
这是我们思考本题的一个大体思路,但本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
53最大子数组和
力扣题目链接
题目描述:
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组
是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4] 输出:6 解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1] 输出:1
示例 3:
输入:nums = [5,4,-1,7,8] 输出:23
贪心算法:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result=INT32_MIN;
int temp=0;
for(int i=0;i<();i++){
temp+=nums[i];
if(temp>result){
result=temp;
}
if(temp<=0){
temp=0;
}
}
return result;
}
};
代码:(暴力算法)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result=INT32_MIN;
for(int i=0;i<();i++){
int temp=0;
for(int j=i;j<();j++){
temp+=nums[j];
result=temp>result?temp:result;
}
}
return result;
}
};