SpringBoot 集成 Spark demo

时间:2025-02-17 08:06:21

spark 概念及linux 本地模式部署请点这里

一:配置文件
 <?xml version="1.0" encoding="UTF-8"?>
<project xmlns="/POM/4.0.0"
         xmlns:xsi="http:///2001/XMLSchema-instance"
         xsi:schemaLocation="/POM/4.0.0 /xsd/maven-4.0.">
    <modelVersion>4.0.0</modelVersion>
    <groupId></groupId>
    <artifactId>zymTest</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <!-- /artifact//spark-sql -->
        <dependency>
            <groupId></groupId>
            <artifactId>spark-sql_2.13</artifactId>
            <version>3.2.0</version>
        </dependency>
        <!-- /artifact/mysql/mysql-connector-java -->
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>6.0.6</version>
        </dependency>
    </dependencies>

    <properties>
        <>8</>
        <>8</>
    </properties>
</project>

二:测试类

import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import ;
import scala.Tuple2;

import ;
import ;



public class SparkTest {


    public static void main(String[] args) {
        //testSparkRddTxt();

        //testSparkRddCsv();

        //testSparkRddMysql();

        testSparkRddJson();
    }


    //spark 测试外部文件(txt)
    //rdd:resilient distributed dataset ,弹性分布式数据集
    public static void testSparkRddTxt(){
        //1.环境准备
        SparkConf sparkConf = new SparkConf();
        ("","localhost");
        //("SPARK_LOCAL_HOSTNAME","localhost");
        ("JavaSparkDemo").setMaster("local[*]");

        JavaSparkContext jsc = new JavaSparkContext(sparkConf);
        ("WARN");

        //2.处理数据
        JavaRDD<String> fileRDD = ("D:\\TEMP\\");

        JavaRDD<String> wordsRDD = (line -> ((" ")).iterator());
        JavaPairRDD<String, Integer> wordAndOneRDD = (word -> new Tuple2<>(word, 1));
        JavaPairRDD<String, Integer> wordAndCountRDD = ((a, b) -> a + b);

        //3.输出结果
        List<Tuple2<String, Integer>> result = ();
        (::println);

        //4.关闭资源
        ();
    }

    //spark 测试外部文件(csv)
    public static void testSparkRddCsv(){
        //1.环境准备
        SparkConf sparkConf = new SparkConf();
        ("","localhost");
        ("JavaSparkDemo").setMaster("local[*]");

        JavaSparkContext jsc = new JavaSparkContext(sparkConf);
        ("WARN");

        //2.读取外部文件创建rdd,以字符串读取
        JavaRDD<String> fileRDD = ("D:\\TEMP\\");
        //3.把文件内容使用,分割
        JavaRDD<String> wordsRDD = (line -> ((",")).iterator());
        JavaPairRDD<String, Integer> wordAndOneRDD = (word -> new Tuple2<>(word, 1));
        JavaPairRDD<String, Integer> wordAndCountRDD = ((a, b) -> a + b);

        (());
        ();

    }


    //spark 操作mysql数据库
    //添加依赖:mysql-connector-java
    public static void testSparkRddMysql(){
        SparkSession spark = SparkSession
                .builder()
                .appName("SparkSQLTest3")
                .config("", "localhost")
                .config("", "some-value")
                .master("local[*]")
                .getOrCreate();


        //DataSet 是具有强类型的数据集合
        Dataset<Row> jdbcDF = ()
                .format("jdbc")
                .option("url", "jdbc:mysql://10.0.173.220:3307/dtbk_rzt?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai")
                .option("dbtable", "(SELECT * FROM location_authorize) tmp")
                .option("user", "dtbk_dev_2")
                .option("password", "1qaz@WSX")
                .option("driver","")
                .load();

        ();
        ();

        //转化为RDD
        JavaRDD<Row> rowJavaRDD = ();
        (());

        ();
    }


    //spark 测试json
    public static void testSparkRddJson(){
        //1.环境准备
        SparkSession spark = SparkSession
                .builder()
                .appName("SparkSQLTest3")
                .config("", "localhost")
                .config("", "some-value")
                .master("local[*]")
                .getOrCreate();

        Dataset<Row> df = ().json("D:\\TEMP\\");
        ();
        ();

        ("t_person");
        ("select age,name from t_person where age > 3").show();

        ();
    }

}
三:总结

测试类中一共有写了四个测试方法,包含分析txt文件,csv文件,json数据处理,直连mysql数据库,方法都经过测试,可以正常打印结果,特别是jdbc 直连mysql可以直接写sql语句,很方便