模数之和  AtCoder - 4172  数学

时间:2025-02-15 10:26:53

F - 模数之和

 AtCoder - 4172 

Problem Statement

 

You are given N positive integers a_1, a_2, ..., a_N.

For a non-negative integer m, let f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N).

Here, X\ mod\ Y denotes the remainder of the division of X by Y.

Find the maximum value of f.

Constraints

 

  • All values in input are integers.
  • 2 \leq N \leq 3000
  • 2 \leq a_i \leq 10^5

Input

 

Input is given from Standard Input in the following format:

  1. N
  2. a_1 a_2 ... a_N

Output

 

Print the maximum value of f.

Sample Input 1

 

  1. 3
  2. 3 4 6

Sample Output 1

 

10

f(11) = (11\ mod\ 3) + (11\ mod\ 4) + (11\ mod\ 6) = 10 is the maximum value of f.

Sample Input 2

 

  1. 5
  2. 7 46 11 20 11

Sample Output 2

 

90

Sample Input 3

 

  1. 7
  2. 994 518 941 851 647 2 581

Sample Output 3

 

4527
  • f(m − 1) = (a1 − 1) + (a2 − 1) + · · · + (an − 1)

  1. import ;
  2. public class Main{
  3. public static void main(String args[]){
  4. Scanner sc = new Scanner();
  5. int n = ();
  6. int ans = 0;
  7. for (int i = 0; i < n; i++) {
  8. ans += ();
  9. }
  10. (ans-n);
  11. }
  12. }