我们首先提出这样一个简单的需求:
现在要分析某网站的访问日志信息,统计来自不同IP的用户访问的次数,从而通过Geo信息来获得来访用户所在国家地区分布状况。这里我拿我网站的日志记录行示例,如下所示:
1
2
3
4
5
6
|
121.205 . 198.92 - - [ 21 /Feb/ 2014 : 00 : 00 : 07 + 0800 ] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
121.205 . 198.92 - - [ 21 /Feb/ 2014 : 00 : 00 : 11 + 0800 ] "POST /wp-comments-post.php HTTP/1.1" 302 26 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"
121.205 . 198.92 - - [ 21 /Feb/ 2014 : 00 : 00 : 12 + 0800 ] "GET /archives/417.html/ HTTP/1.1" 301 26 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
121.205 . 198.92 - - [ 21 /Feb/ 2014 : 00 : 00 : 12 + 0800 ] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
121.205 . 241.229 - - [ 21 /Feb/ 2014 : 00 : 00 : 13 + 0800 ] "GET /archives/526.html HTTP/1.1" 200 12080 "http://shiyanjun.cn/archives/526.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
121.205 . 241.229 - - [ 21 /Feb/ 2014 : 00 : 00 : 15 + 0800 ] "POST /wp-comments-post.php HTTP/1.1" 302 26 "http://shiyanjun.cn/archives/526.html/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"
|
Java实现Spark应用程序(Application)
我们实现的统计分析程序,有如下几个功能点:
从HDFS读取日志数据文件
将每行的第一个字段(IP地址)抽取出来
统计每个IP地址出现的次数
根据每个IP地址出现的次数进行一个降序排序
根据IP地址,调用GeoIP库获取IP所属国家
打印输出结果,每行的格式:[国家代码] IP地址 频率
下面,看我们使用Java实现的统计分析应用程序代码,如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
package org.shirdrn.spark.job;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.regex.Pattern;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.shirdrn.spark.job.maxmind.Country;
import org.shirdrn.spark.job.maxmind.LookupService;
import scala.Serializable;
import scala.Tuple2;
public class IPAddressStats implements Serializable {
private static final long serialVersionUID = 8533489548835413763L;
private static final Log LOG = LogFactory.getLog(IPAddressStats. class );
private static final Pattern SPACE = Pattern.compile( " " );
private transient LookupService lookupService;
private transient final String geoIPFile;
public IPAddressStats(String geoIPFile) {
this .geoIPFile = geoIPFile;
try {
// lookupService: get country code from a IP address
File file = new File( this .geoIPFile);
LOG.info( "GeoIP file: " + file.getAbsolutePath());
lookupService = new AdvancedLookupService(file, LookupService.GEOIP_MEMORY_CACHE);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
@SuppressWarnings ( "serial" )
public void stat(String[] args) {
JavaSparkContext ctx = new JavaSparkContext(args[ 0 ], "IPAddressStats" ,
System.getenv( "SPARK_HOME" ), JavaSparkContext.jarOfClass(IPAddressStats. class ));
JavaRDD<String> lines = ctx.textFile(args[ 1 ], 1 );
// splits and extracts ip address filed
JavaRDD<String> words = lines.flatMap( new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String s) {
// 121.205.198.92 - - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"
// ip address
return Arrays.asList(SPACE.split(s)[ 0 ]);
}
});
// map
JavaPairRDD<String, Integer> ones = words.map( new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1 );
}
});
// reduce
JavaPairRDD<String, Integer> counts = ones.reduceByKey( new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
List<Tuple2<String, Integer>> output = counts.collect();
// sort statistics result by value
Collections.sort(output, new Comparator<Tuple2<String, Integer>>() {
@Override
public int compare(Tuple2<String, Integer> t1, Tuple2<String, Integer> t2) {
if (t1._2 < t2._2) {
return 1 ;
} else if (t1._2 > t2._2) {
return - 1 ;
}
return 0 ;
}
});
writeTo(args, output);
}
private void writeTo(String[] args, List<Tuple2<String, Integer>> output) {
for (Tuple2<?, ?> tuple : output) {
Country country = lookupService.getCountry((String) tuple._1);
LOG.info( "[" + country.getCode() + "] " + tuple._1 + "\t" + tuple._2);
}
}
public static void main(String[] args) {
// ./bin/run-my-java-example org.shirdrn.spark.job.IPAddressStats spark://m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat
if (args.length < 3 ) {
System.err.println( "Usage: IPAddressStats <master> <inFile> <GeoIPFile>" );
System.err.println( " Example: org.shirdrn.spark.job.IPAddressStats spark://m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat" );
System.exit( 1 );
}
String geoIPFile = args[ 2 ];
IPAddressStats stats = new IPAddressStats(geoIPFile);
stats.stat(args);
System.exit( 0 );
}
}
|
具体实现逻辑,可以参考代码中的注释。我们使用Maven管理构建Java程序,首先看一下我的pom配置中所依赖的软件包,如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2 .10 </artifactId>
<version> 0.9. 0 -incubating</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version> 1.2. 16 </version>
</dependency>
<dependency>
<groupId>dnsjava</groupId>
<artifactId>dnsjava</artifactId>
<version> 2.1. 1 </version>
</dependency>
<dependency>
<groupId>commons-net</groupId>
<artifactId>commons-net</artifactId>
<version> 3.1 </version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version> 1.2. 1 </version>
</dependency>
</dependencies>
|
需要说明的是,当我们将程序在Spark集群上运行时,它要求我们的编写的Job能够进行序列化,如果某些字段不需要序列化或者无法序列化,可以直接使用transient修饰即可,如上面的属性lookupService没有实现序列化接口,使用transient使其不执行序列化,否则的话,可能会出现类似如下的错误:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
14 / 03 / 10 22 : 34 : 06 INFO scheduler.DAGScheduler: Failed to run collect at IPAddressStats.java: 76
Exception in thread "main" org.apache.spark.SparkException: Job aborted: Task not serializable: java.io.NotSerializableException: org.shirdrn.spark.job.IPAddressStats
at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$ 1 .apply(DAGScheduler.scala: 1028 )
at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$ 1 .apply(DAGScheduler.scala: 1026 )
at scala.collection.mutable.ResizableArray$ class .foreach(ResizableArray.scala: 59 )
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala: 47 )
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala: 1026 )
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala: 794 )
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala: 737 )
at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$ 4 .apply(DAGScheduler.scala: 741 )
at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$ 4 .apply(DAGScheduler.scala: 740 )
at scala.collection.immutable.List.foreach(List.scala: 318 )
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala: 740 )
at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala: 569 )
at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$ 1 $$anon$ 2 $$anonfun$receive$ 1 .applyOrElse(DAGScheduler.scala: 207 )
at akka.actor.ActorCell.receiveMessage(ActorCell.scala: 498 )
at akka.actor.ActorCell.invoke(ActorCell.scala: 456 )
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala: 237 )
at akka.dispatch.Mailbox.run(Mailbox.scala: 219 )
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala: 386 )
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java: 260 )
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java: 1339 )
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java: 1979 )
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java: 107 )
|
在Spark集群上运行Java程序
这里,我使用了Maven管理构建Java程序,实现上述代码以后,使用Maven的maven-assembly-plugin插件,配置内容如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<archive>
<manifest>
<mainClass>org.shirdrn.spark.job.UserAgentStats</mainClass>
</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<excludes>
<exclude>*.properties</exclude>
<exclude>*.xml</exclude>
</excludes>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase> package </phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
|
将相关依赖库文件都打进程序包里面,最后拷贝JAR文件到Linux系统下(不一定非要在Spark集群的Master节点上),保证该节点上Spark的环境变量配置正确即可看。Spark软件发行包解压缩后,可以看到脚本bin/run-example,我们可以直接修改该脚本,将对应的路径指向我们实现的Java程序包(修改变量EXAMPLES_DIR以及我们的JAR文件存放位置相关的内容),使用该脚本就可以运行,脚本内容如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
cygwin= false
case "`uname`" in
CYGWIN*) cygwin= true ;;
esac
SCALA_VERSION=2.10
# Figure out where the Scala framework is installed
FWDIR= "$(cd `dirname $0`/..; pwd)"
# Export this as SPARK_HOME
export SPARK_HOME= "$FWDIR"
# Load environment variables from conf/spark-env.sh, if it exists
if [ -e "$FWDIR/conf/spark-env.sh" ] ; then
. $FWDIR/conf/spark-env.sh
fi
if [ -z "$1" ]; then
echo "Usage: run-example <example-class> [<args>]" >&2
exit 1
fi
# Figure out the JAR file that our examples were packaged into. This includes a bit of a hack
# to avoid the -sources and -doc packages that are built by publish-local.
EXAMPLES_DIR= "$FWDIR" /java-examples
SPARK_EXAMPLES_JAR= ""
if [ -e "$EXAMPLES_DIR" /*.jar ]; then
export SPARK_EXAMPLES_JAR=`ls "$EXAMPLES_DIR" /*.jar`
fi
if [[ -z $SPARK_EXAMPLES_JAR ]]; then
echo "Failed to find Spark examples assembly in $FWDIR/examples/target" >&2
echo "You need to build Spark with sbt/sbt assembly before running this program" >&2
exit 1
fi
# Since the examples JAR ideally shouldn't include spark-core (that dependency should be
# "provided"), also add our standard Spark classpath, built using compute-classpath.sh.
CLASSPATH=`$FWDIR/bin/compute-classpath.sh`
CLASSPATH= "$SPARK_EXAMPLES_JAR:$CLASSPATH"
if $cygwin; then
CLASSPATH=`cygpath -wp $CLASSPATH`
export SPARK_EXAMPLES_JAR=`cygpath -w $SPARK_EXAMPLES_JAR`
fi
# Find java binary
if [ -n "${JAVA_HOME}" ]; then
RUNNER= "${JAVA_HOME}/bin/java"
else
if [ `command -v java` ]; then
RUNNER= "java"
else
echo "JAVA_HOME is not set" >&2
exit 1
fi
fi
# Set JAVA_OPTS to be able to load native libraries and to set heap size
JAVA_OPTS= "$SPARK_JAVA_OPTS"
JAVA_OPTS= "$JAVA_OPTS -Djava.library.path=$SPARK_LIBRARY_PATH"
# Load extra JAVA_OPTS from conf/java-opts, if it exists
if [ -e "$FWDIR/conf/java-opts" ] ; then
JAVA_OPTS= "$JAVA_OPTS `cat $FWDIR/conf/java-opts`"
fi
export JAVA_OPTS
if [ "$SPARK_PRINT_LAUNCH_COMMAND" == "1" ]; then
echo -n "Spark Command: "
echo "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@"
echo "========================================"
echo
fi
exec "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@"
|
在Spark上运行我们开发的Java程序,执行如下命令:
1
2
|
cd /home/shirdrn/cloud/programs/spark- 0.9 . 0 -incubating-bin-hadoop1
./bin/run-my-java-example org.shirdrn.spark.job.IPAddressStats spark: //m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat
|
我实现的程序类org.shirdrn.spark.job.IPAddressStats运行需要3个参数:
Spark集群主节点URL:例如我的是spark://m1:7077
输入文件路径:业务相关的,我这里是从HDFS上读取文件hdfs://m1:9000/user/shirdrn/wwwlog20140222.log
GeoIP库文件:业务相关的,用来计算IP地址所属国家的外部文件
如果程序没有错误,能够正常运行,控制台输出程序运行日志,示例如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
14 / 03 / 10 22 : 17 : 24 INFO job.IPAddressStats: GeoIP file: /home/shirdrn/cloud/programs/spark- 0.9 . 0 -incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/shirdrn/cloud/programs/spark- 0.9 . 0 -incubating-bin-hadoop1/java-examples/spark- 0.0 . 1 -SNAPSHOT-jar-with-dependencies.jar!/org/slf4j/impl/StaticLoggerBinder. class ]
SLF4J: Found binding in [jar:file:/home/shirdrn/cloud/programs/spark- 0.9 . 0 -incubating-bin-hadoop1/assembly/target/scala- 2.10 /spark-assembly_2. 10 - 0.9 . 0 -incubating-hadoop1. 0.4 .jar!/org/slf4j/impl/StaticLoggerBinder. class ]
SLF4J: See http: //www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14 / 03 / 10 22 : 17 : 25 INFO slf4j.Slf4jLogger: Slf4jLogger started
14 / 03 / 10 22 : 17 : 25 INFO Remoting: Starting remoting
14 / 03 / 10 22 : 17 : 25 INFO Remoting: Remoting started; listening on addresses :[akka.tcp: //spark@m1:57379]
14 / 03 / 10 22 : 17 : 25 INFO Remoting: Remoting now listens on addresses: [akka.tcp: //spark@m1:57379]
14 / 03 / 10 22 : 17 : 25 INFO spark.SparkEnv: Registering BlockManagerMaster
14 / 03 / 10 22 : 17 : 25 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local- 20140310221725 -c1cb
14 / 03 / 10 22 : 17 : 25 INFO storage.MemoryStore: MemoryStore started with capacity 143.8 MB.
14 / 03 / 10 22 : 17 : 25 INFO network.ConnectionManager: Bound socket to port 45189 with id = ConnectionManagerId(m1, 45189 )
14 / 03 / 10 22 : 17 : 25 INFO storage.BlockManagerMaster: Trying to register BlockManager
14 / 03 / 10 22 : 17 : 25 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager m1: 45189 with 143.8 MB RAM
14 / 03 / 10 22 : 17 : 25 INFO storage.BlockManagerMaster: Registered BlockManager
14 / 03 / 10 22 : 17 : 25 INFO spark.HttpServer: Starting HTTP Server
14 / 03 / 10 22 : 17 : 25 INFO server.Server: jetty- 7 .x.y-SNAPSHOT
14 / 03 / 10 22 : 17 : 25 INFO server.AbstractConnector: Started SocketConnector @0 .0. 0.0 : 49186
14 / 03 / 10 22 : 17 : 25 INFO broadcast.HttpBroadcast: Broadcast server started at http: //10.95.3.56:49186
14 / 03 / 10 22 : 17 : 25 INFO spark.SparkEnv: Registering MapOutputTracker
14 / 03 / 10 22 : 17 : 25 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-56c3e30d-a01b- 4752 -83d1-af1609ab2370
14 / 03 / 10 22 : 17 : 25 INFO spark.HttpServer: Starting HTTP Server
14 / 03 / 10 22 : 17 : 25 INFO server.Server: jetty- 7 .x.y-SNAPSHOT
14 / 03 / 10 22 : 17 : 25 INFO server.AbstractConnector: Started SocketConnector @0 .0. 0.0 : 52073
14 / 03 / 10 22 : 17 : 26 INFO server.Server: jetty- 7 .x.y-SNAPSHOT
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage/rdd, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/stage, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/pool, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/environment, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/executors, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/metrics/json, null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/ static , null }
14 / 03 / 10 22 : 17 : 26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/, null }
14 / 03 / 10 22 : 17 : 26 INFO server.AbstractConnector: Started SelectChannelConnector @0 .0. 0.0 : 4040
14 / 03 / 10 22 : 17 : 26 INFO ui.SparkUI: Started Spark Web UI at http: //m1:4040
14 / 03 / 10 22 : 17 : 26 INFO spark.SparkContext: Added JAR /home/shirdrn/cloud/programs/spark- 0.9 . 0 -incubating-bin-hadoop1/java-examples/spark- 0.0 . 1 -SNAPSHOT-jar-with-dependencies.jar at http: //10.95.3.56:52073/jars/spark-0.0.1-SNAPSHOT-jar-with-dependencies.jar with timestamp 1394515046396
14 / 03 / 10 22 : 17 : 26 INFO client.AppClient$ClientActor: Connecting to master spark: //m1:7077...
14 / 03 / 10 22 : 17 : 26 INFO storage.MemoryStore: ensureFreeSpace( 60341 ) called with curMem= 0 , maxMem= 150837657
14 / 03 / 10 22 : 17 : 26 INFO storage.MemoryStore: Block broadcast_0 stored as values to memory (estimated size 58.9 KB, free 143.8 MB)
14 / 03 / 10 22 : 17 : 26 INFO cluster.SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app- 20140310221726 - 0000
14 / 03 / 10 22 : 17 : 27 INFO client.AppClient$ClientActor: Executor added: app- 20140310221726 - 0000 / 0 on worker- 20140310221648 -s1- 52544 (s1: 52544 ) with 1 cores
14 / 03 / 10 22 : 17 : 27 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app- 20140310221726 - 0000 / 0 on hostPort s1: 52544 with 1 cores, 512.0 MB RAM
14 / 03 / 10 22 : 17 : 27 WARN util.NativeCodeLoader: Unable to load native -hadoop library for your platform... using builtin-java classes where applicable
14 / 03 / 10 22 : 17 : 27 WARN snappy.LoadSnappy: Snappy native library not loaded
14 / 03 / 10 22 : 17 : 27 INFO client.AppClient$ClientActor: Executor updated: app- 20140310221726 - 0000 / 0 is now RUNNING
14 / 03 / 10 22 : 17 : 27 INFO mapred.FileInputFormat: Total input paths to process : 1
14 / 03 / 10 22 : 17 : 27 INFO spark.SparkContext: Starting job: collect at IPAddressStats.java: 77
14 / 03 / 10 22 : 17 : 27 INFO scheduler.DAGScheduler: Registering RDD 4 (reduceByKey at IPAddressStats.java: 70 )
14 / 03 / 10 22 : 17 : 27 INFO scheduler.DAGScheduler: Got job 0 (collect at IPAddressStats.java: 77 ) with 1 output partitions (allowLocal= false )
14 / 03 / 10 22 : 17 : 27 INFO scheduler.DAGScheduler: Final stage: Stage 0 (collect at IPAddressStats.java: 77 )
14 / 03 / 10 22 : 17 : 27 INFO scheduler.DAGScheduler: Parents of final stage: List(Stage 1 )
14 / 03 / 10 22 : 17 : 27 INFO scheduler.DAGScheduler: Missing parents: List(Stage 1 )
14 / 03 / 10 22 : 17 : 27 INFO scheduler.DAGScheduler: Submitting Stage 1 (MapPartitionsRDD[ 4 ] at reduceByKey at IPAddressStats.java: 70 ), which has no missing parents
14 / 03 / 10 22 : 17 : 27 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from Stage 1 (MapPartitionsRDD[ 4 ] at reduceByKey at IPAddressStats.java: 70 )
14 / 03 / 10 22 : 17 : 27 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
14 / 03 / 10 22 : 17 : 28 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp: //sparkExecutor@s1:59233/user/Executor#-671170811] with ID 0
14 / 03 / 10 22 : 17 : 28 INFO scheduler.TaskSetManager: Starting task 1.0 : 0 as TID 0 on executor 0 : s1 (PROCESS_LOCAL)
14 / 03 / 10 22 : 17 : 28 INFO scheduler.TaskSetManager: Serialized task 1.0 : 0 as 2396 bytes in 5 ms
14 / 03 / 10 22 : 17 : 29 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager s1: 47282 with 297.0 MB RAM
14 / 03 / 10 22 : 17 : 32 INFO scheduler.TaskSetManager: Finished TID 0 in 3376 ms on s1 (progress: 0 / 1 )
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: Completed ShuffleMapTask( 1 , 0 )
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: Stage 1 (reduceByKey at IPAddressStats.java: 70 ) finished in 4.420 s
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: looking for newly runnable stages
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: running: Set()
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: waiting: Set(Stage 0 )
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: failed: Set()
14 / 03 / 10 22 : 17 : 32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 1.0 from pool
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: Missing parents for Stage 0 : List()
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: Submitting Stage 0 (MapPartitionsRDD[ 6 ] at reduceByKey at IPAddressStats.java: 70 ), which is now runnable
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from Stage 0 (MapPartitionsRDD[ 6 ] at reduceByKey at IPAddressStats.java: 70 )
14 / 03 / 10 22 : 17 : 32 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
14 / 03 / 10 22 : 17 : 32 INFO scheduler.TaskSetManager: Starting task 0.0 : 0 as TID 1 on executor 0 : s1 (PROCESS_LOCAL)
14 / 03 / 10 22 : 17 : 32 INFO scheduler.TaskSetManager: Serialized task 0.0 : 0 as 2255 bytes in 1 ms
14 / 03 / 10 22 : 17 : 32 INFO spark.MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark @s1 : 33534
14 / 03 / 10 22 : 17 : 32 INFO spark.MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 120 bytes
14 / 03 / 10 22 : 17 : 32 INFO scheduler.TaskSetManager: Finished TID 1 in 282 ms on s1 (progress: 0 / 1 )
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: Completed ResultTask( 0 , 0 )
14 / 03 / 10 22 : 17 : 32 INFO scheduler.DAGScheduler: Stage 0 (collect at IPAddressStats.java: 77 ) finished in 0.314 s
14 / 03 / 10 22 : 17 : 32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 0.0 from pool
14 / 03 / 10 22 : 17 : 32 INFO spark.SparkContext: Job finished: collect at IPAddressStats.java: 77 , took 4.870958309 s
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 58.246 . 49.218 312
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [KR] 1.234 . 83.77 300
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 120.43 . 11.16 212
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 110.85 . 72.254 207
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 27.150 . 229.134 185
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [HK] 180.178 . 52.181 181
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 120.37 . 210.212 180
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 222.77 . 226.83 176
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 120.43 . 11.205 169
14 / 03 / 10 22 : 17 : 32 INFO job.IPAddressStats: [CN] 120.43 . 9.19 165
...
|
我们也可以通过Web控制台来查看当前执行应用程序(Application)的状态信息,通过Master节点的8080端口(如:http://m1:8080/)就能看到集群的应用程序(Application)状态信息。
另外,需要说明的时候,如果在Unix环境下使用Eclipse使用Java开发Spark应用程序,也能够直接通过Eclipse连接Spark集群,并提交开发的应用程序,然后交给集群去处理。
总结
以上就是本文关于详解Java编写并运行spark应用程序的方法的全部内容,希望对大家有所帮助。有什么问题可以随时留言,小编会及时回复大家。
原文链接:http://shiyanjun.cn/archives/742.html