P4899 [IOI2018] werewolf 狼人
给定一个有 n n n个点 m m m条边的无向图,有 Q Q Q个询问
每次输入 S , E , L , R S, E, L, R S,E,L,R,表示你在 S S S点出发,要到 E E E点,且初始时你是人形态,你只能走 [ L , n ] [L, n] [L,n]的点,
但是我们要以狼的形态走到终点,这个时候只能走 [ 1 , R ] [1, R] [1,R]之间的点,
也就是说我们要在 [ L , R ] [L, R] [L,R]的某个点变身,问能否从 S − > E S->E S−>E。
一个比较容易想到的做法:
显然,初始状态我们要满足 S ∈ [ L , n ] , E ∈ [ 1 , R ] S \in [L, n], E \in[1, R] S∈[L,n],E∈[1,R],否则就没有讨论的意义了。
假设满足 S ∈ [ L , n ] , E ∈ [ 1 , R ] S \in[L, n], E \in[1,R] S∈[L,n],E∈[1,R],
我们对每条边按照 { u , v , w = m i n ( u , v ) } \{u, v, w = min(u, v)\} {u,v,w=min(u,v)}这样的方式,跑一个降序 k r u s k a l kruskal kruskal树,然后从 S S S点出发,向上跳,找到使点权不小于 L L L,能到达的点 u u u,
同样的我们对每条边按照 { u , v , w = m a x ( u , v } \{u, v, w = max(u, v\} {u,v,w=max(u,v}的方式,跑一个升序 k r u s k a l kruskal kruskal树,然后从 E E E出发,向上跳,找到使点权不大于 R R R,能到达的点 v v v,
接下来我们只需判断 u u u所代表的点集 S u S_u Su, v v v所代表的点集 S v S_v Sv,判断这两个点集有没有交集即可。
设图一进栈 d f s dfs dfs序为 L 1 L1 L1,出栈 d f s dfs dfs序为 R 1 R1 R1,同理图二为 L 2 , R 2 L2, R2 L2,R2,
设 x [ i ] x[i] x[i]为在图一 d f s dfs dfs序为 i i i的点编号, y [ i ] y[i] y[i]为,点编号为 i i i的点在图二的 d f s dfs dfs序,接下来我们只要在区间 [ L 1 u , R 1 u ] [L1_u, R1_u] [L1u,R1u]的主席树上查找区间 [ L 2 v , R 2 v ] [L2_v, R2_v] [L2v,R2v]是否有值即可。
#include <bits/stdc++.h>
using namespace std;
const int N = 4e5 + 10;
struct Res {
int u, v, w;
bool operator < (const Res &t) const {
return w < t.w;
}
}edge[N];
int n, m, Q, x[N], y[N];
int root[N], ls[N << 5], rs[N<< 5], sum[N << 5], num;
void update(int &rt, int pre, int l, int r, int x, int v) {
rt = ++num;
ls[rt] = ls[pre], rs[rt] = rs[pre], sum[rt] = sum[pre] + v;
if (l == r) {
return ;
}
int mid = l + r >> 1;
if (x <= mid) {
update(ls[rt], ls[pre], l, mid, x, v);
}
else {
update(rs[rt], rs[pre], mid + 1, r, x, v);
}
}
int query(int rt1, int rt2, int l, int r, int L, int R) {
// cout << l << " " << r << "\n";
if (l >= L && r <= R) {
return sum[rt2] - sum[rt1];
}
int ans = 0, mid = l + r >> 1;
if (L <= mid) {
ans += query(ls[rt1], ls[rt2], l, mid, L, R);
}
if (R > mid) {
ans += query(rs[rt1], rs[rt2], mid + 1, r, L, R);
}
return ans;
}
struct Kruskal {
int head[N], to[N], nex[N], cnt = 1;
int ff[N], value[N], fa[N][21], l[N], r[N], rk[N], tot, nn;
void add(int x, int y) {
to[cnt] = y;
nex[cnt] = head[x];
head[x] = cnt++;
}
int find(int rt) {
return ff[rt] == rt ? rt : ff[rt] = find(ff[rt]);
}
void dfs(int rt, int f) {
fa[rt][0] = f, l[rt] = ++tot, rk[tot] = rt;
for (int i = 1; i <= 20; i++) {
fa[rt][i] = fa[fa[rt][i - 1]][i - 1];
}
for (int i = head[rt]; i; i = nex[i]) {
if (to[i] == f) {
continue;
}
dfs(to[i], rt);
}
r[rt] = tot;
}
void kruskal(int rev) {
sort(edge + 1, edge + 1 + m);
if (rev) {
reverse(edge + 1, edge + 1 + m);
}
for (int i = 1; i < N; i++) {
ff[i] = i;
}
nn = n;
for (int i = 1, cur = 1; i <= m && cur < n; i++) {
int u = find(edge[i].u), v = find(edge[i].v);
if (u != v) {
cur++, nn++;
ff[u] = ff[v] = nn;
value[nn] = edge[i].w;
add(nn, u), add(nn, v);
if (u <= n) {
value[u] = edge[i].w;
}
if (v <= n) {
value[v] = edge[i].w;
}
}
}
dfs(nn, 0);
}
bool judge(int u, int x, int flag) {
return flag ? value[u] >= x : value[u] <= x;
}
int work(int u, int x, int flag) {
for (int i = 20; i >= 0; i--) {
if (fa[u][i] && judge(fa[u][i], x, flag)) {
u = fa[u][i];
}
}
return u;
}
}a, b;
int main() {
// freopen("", "r", stdin);
// freopen("", "w", stdout);
// ios::sync_with_stdio(false), (0), (0);
scanf("%d %d %d", &n, &m, &Q);
for (int i = 1; i <= m; i++) {
scanf("%d %d", &edge[i].u, &edge[i].v);
edge[i].u++, edge[i].v++;
}
for (int i = 1; i <= m; i++) {
edge[i].w = min(edge[i].v, edge[i].u);
}
a.kruskal(1);
for (int i = 1; i <= m; i++) {
edge[i].w = max(edge[i].v, edge[i].u);
}
b.kruskal(0);
for (int i = 1; i < 2 * n; i++) {
x[i] = a.rk[i];
y[i] = b.l[i];
}
for (int i = 1; i < 2 * n; i++) {
root[i] = root[i - 1];
if (x[i] <= n) {
update(root[i], root[i - 1], 1, 2 * n, y[x[i]], 1);
}
}
while (Q--) {
int u, v, L, R;
scanf("%d %d %d %d", &u, &v, &L, &R);
u++, v++, L++, R++;
u = a.work(u, L, 1), v = b.work(v, R, 0);
int l1 = a.l[u], r1 = a.r[u], l2 = b.l[v], r2 = b.r[v];
printf("%d\n", query(root[l1 - 1], root[r1], 1, 2 * n, l2, r2) != 0);
}
return 0;
}