import torch
import torch.nn as nn
import torch.optim as optim
# 生成数据
x = torch.randn(100, 1)
y = 2 * x + 1 + 0.1 * torch.randn(100, 1)
# 定义模型
model = nn.Linear(1, 1)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
for epoch in range(100):
# 前向传播
y_pred = model(x)
# 计算损失
loss = criterion(y_pred, y)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 10 == 0:
print(f'Epoch [{epoch+1}/100], Loss: {loss.item():.4f}')
# 输出训练后的参数
print('模型参数:', model.weight.item(), model.bias.item())