优势
性能强劲
-
精度提升:DeepSeek - V3在训练过程中采用了多头潜在注意力(MLA)和DeepSeekMoE技术,显著提升了模型的性能和精度。像在匈牙利最新高中数学考试测试中,其发布的开源大模型达到65分的高分,超越同量级的LLaMA - 2模型,接近GPT - 4的水平,展现出出色的理解与计算能力,在数学推理方面的表现突出,在其他如推理、编程等领域同样在多个中英文公开评测榜单上表现出色[14]。
-
有效处理长文本:支持长上下文扩展,能够处理长达128K的输入文本,对于长文档处理、长对话场景等非常有利,例如长文本的翻译、长文档内容抽取分析等任务可以在这个模型上得到较好的处理结果。
效率方面
-
计算成本低:混合专家架构(MoE)通过选择性地激活参数降低了计算成本,如DeepSeek - V3总参数6710亿但每个输入只激活370亿参数。多Token预测(MTP)使推理速度更快,FP8混合精度训练既保证训练准确性又减少计算量,这些技术共同作用使得DeepSeek大模型在处理任务时计算效率高、成本低。像DeepSeek - R1的基座模型训练成本较低,一次完整训练只需要550万美元,每次生成只需要激活相对较少的参数,降低了对计算资源的需求,提高了计算效率[19]。
-
预训练优势:部分模型在包含2万亿个中英文token的数据集上进行了预训练,这使得模型能够深入学习多种语言知识,提升了模型语言处理方面的泛化能力,从而能够适应多种语言任务和复杂的语言语境,例如机器翻译、多语言文本生成等任务中,模型能够表现出较好的适应性和准确性。
灵活性与扩展性
-
灵活的模型架构:模型提供不同参数版本,例如提供70亿和670亿两个参数版本的基础模型和指令微调模型,用户可以根据实际使用场景的需求进行合适版本的选择。在功能上也集成多种能力,如DeepSeek2.5集成了DeepSeek - V2 - Chat和DeepSeek - Coder - V2 - Instruct的功能,增强了通用语言能力和编码功能,适用于各种应用场景[21]。
-
开源且应用广泛:所采用的MIT许可协议完全开源且不限制商用,开发者能根据自身需求定制和优化模型,并部署到自己的服务器上。这一特性有助于技术在全球范围内的快速传播和共享,例如已经有不少人通过公开技术路线成功复现测试结果,推动了各项应用的发展,从自然语言处理到多模态数据处理等领域都有涉及,应用场景覆盖智能客服、代码开发、多模态内容创作等多个方向。还可以激励本土人才投身人工智能研发,打破高科技人才被西方垄断的局面,为人工智能领域注入新活力。
不足
算力与资源依赖
- 随着任务复杂程度不断增大或数据规模持续增加,AI算力需求不断提升,当前虽然计算效率有所提升,但依旧需要强大的硬件支持以满足大规模数据处理需求。并且在AI算力日益增长的需求下,如何有效管理和优化计算资源仍然是待解决的问题,以确保模型可以持续稳定地运行并发挥最佳性能[17]。
人才竞争压力
- 在技术人才的竞争方面面临挑战,尽管DeepSeek在用人逻辑上与其他大模型公司差异不大,但由于其年轻高潜的人才标准,使得在吸引市场上优秀人才时竞争愈发激烈,而人工智能领域的技术研发高度依赖高水平的专业人才,这在一定程度上可能影响其研发和创新的速度及深度[13]。