算法时间复杂度的计算 [整理]
--------------------------------------------------------------------------------------------------
复杂情况的分析
以上都是对于单个嵌套循环的情况进行分析,但实际上还可能有其他的情况,下面将例举说明。
1.并列循环的复杂度分析
将各个嵌套循环的时间复杂度相加。
例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
解:
第一个for循环
T(n) = n
f(n) = n
时间复杂度为Ο(n)
第二个for循环
T(n) = n2
f(n) = n2
时间复杂度为Ο(n2)
整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。
2.函数调用的复杂度分析
例如:
public void printsum(int count){
int sum = 1;
for(int i= 0; i<n; i++){
sum += i;
}
(sum);
}
分析:
记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。
所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)
*这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:
public void printsum(int count){
int sum = 1;
sum = count * (count+1)/2;
(sum);
}
这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。
3.混合情况(多个方法调用与循环)的复杂度分析
例如:
public void suixiangMethod(int n){
printsum(n);//1.1
for(int i= 0; i<n; i++){
printsum(n); //1.2
}
for(int i= 0; i<n; i++){
for(int k=0; k
(i,k); //1.3
}
}
suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。
也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)
--------------------------------------------------------------------------------------------------
更多的例子
O(1)
交换i和j的内容
temp=i;
i=j;
j=temp;
以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
O(n2)
sum=0; /* 执行次数1 */
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
sum++; /* 执行次数n2 */
解:T(n) = 1 + n2 = O(n2)
for (i=1;i<n;i++)
{
y=y+1; ①
for (j=0;j<=(2*n);j++)
x++; ②
}
解: 语句1的频度是n-1
语句2的频度是(n-1)*(2n+1) = 2n2-n-1
T(n) = 2n2-n-1+(n-1) = 2n2-2
f(n) = n2
lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2
T(n) = O(n2).
O(n)
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
{
s=a+b;③
b=a; ④
a=s; ⑤
}
解: 语句1的频度:2,
语句2的频度:n,
语句3的频度:n,
语句4的频度:n,
语句5的频度:n,
T(n) = 2+4n
f(n) = n
lim(T(n)/f(n)) = 2*(1/n) + 4 = 4
T(n) = O(n).
O(log2n)
i=1; ①
while (i<=n)
i=i*2; ②
解: 语句1的频度是1,
设语句2的频度是t, 则:nt<=n; t<=log2n
考虑最坏情况,取最大值t=log2n,
T(n) = 1 + log2n
f(n) = log2n
lim(T(n)/f(n)) = 1/log2n + 1 = 1
T(n) = O(log2n)
O(n3)
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次
T(n) = n(n+1)(n-1)/2 = (n3-n)/2
f(n) = n3
所以时间复杂度为O(n3)。